簡易檢索 / 詳目顯示

研究生: 蘇柏州
Su, Bo-Zhou
論文名稱: 以氧電漿處理碳黑塗佈不織布提升蒸發發電效應
Enhanced Evaporation Power Generation from Carbon Black Coated Non-Woven Fabric by Oxygen Plasma Treatment
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 60
中文關鍵詞: 蒸發發電氧電漿處理毛細力水蒸發誘導碳黑織物纖維
外文關鍵詞: Evaporation power, Oxygen plasma treatment, Capillary force, Water evaporation induction, Carbon black, Fabric fiber
相關次數: 點閱:35下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來人類對於能源的需求日益增加以及環保意識的著重,人們在追求能源的同時也重視可循環且潔淨的替代方案。潔淨的可再生綠色能源中主要有太陽能、風能與水能,其中以水資源是最穩定的。蒸發作用是環境循環中的一部份,為無時無刻都在進行的過程,因此是一種具有潛力的發電方式。在本研究中將以不織布浸塗碳黑的方式製作蒸發發電裝置,透過外在因素或內在因素使裝置內產生不同的體積流率來探討發電。吾等發現經氧電漿處理後的裝置可以使發電量增強,最佳的氧電漿處理時間約控制在三至五分鐘,且其效果性可延續一周以上。此外,透過改變浸塗碳黑的參數,吾等發現碳黑與介面活性劑的比例以及濃度對裝置的影響。最後透過控制環境濕度的實驗表明裝置的蒸發速率會受到濕度影響,不過對於濕度對於發電的效果影響不大,可以在一般環境條件下正常運作。含有鹽類的溶液同時也含有更多的離子,可以有效地增加裝置的效能。同時我們也成功使用並聯2組含有8組串聯的裝置點亮LED。藉由本研究能夠了解如何改善裝置的效能,並為開發高效能的裝置提供有用的訊息。

    In this study, a non-woven fabric coated with carbon black will be used to produce an evaporative power generation device, which will generate electricity by capillary evaporation-driven water flow. In order to understand how to improve the performance of the device, we tried to use oxygen plasma treatment and change the parameter of carbon black. The results showed that the oxygen plasma treated device could enhance the power generation performance. The best oxygen plasma treatment time is about three to five minutes, and its duration of effect can be more than a week. It was also can see that the ratio between carbon black and surfactant would affect the performance of the device. Experiments with controlled ambient humidity show that the evaporation rate of the device is affected by humidity. However, the effect of humidity on power generation is not significant, and it can operate normally under normal environmental conditions. The solution containing salts also contains more ions, which can effectively increase the performance of the device. We have also successfully used two parallel groups of 8 series-connected devices to light up the LED. This study provides methods to improve the performance of the device and provides useful information for the development of high-performance devices.

    中文摘要.................................................................I 致謝..........................................................................XVIII 內容目錄............................................................ .....XIX 表目錄......................................................................XXI 圖目錄......................................................................XXII 符號表......................................................................XXVI 縮寫說明..................................................................XXVIII 第1章 緒論...............................................................1 1.1 簡介....................................................................1 1.2 文獻回顧............................................................4 1.3 研究動機...........................................................15 第2章 原理...............................................................16 2.1 電雙層效應 (Electrical Double Layer).....16 2.2 流動電流 (Streaming current)...................19 第3章 實驗材料與方法..........................................21 3.1 實驗儀器............................................................21 3.2 實驗材料............................................................27 3.3 碳黑-SDBS溶液及裝置製作..........................29 3.4 材料分析.............................................................33 3.5 電壓和電流量測................................................34 第4章 結果與討論....................................................35 4.1 裝置鑑定分析.....................................................35 4.2 不同碳黑對於裝置的電性量測.......................40 4.3 碳黑對於裝置之關係........................................42 4.4 氧電漿處理對於裝置之影響...........................44 4.5 氧電漿處理的時效性........................................47 4.6 濕度對於裝置的影響........................................48 4.7 電極高度對於裝置的影響...............................50 4.8 溶液對於裝置的影響........................................52 4.9 LED點亮測試......................................................53 第5章 結論與展望.....................................................55 5.1 結論.......................................................................55 5.2 未來展望..............................................................56 參考文獻.....................................................................57

    [1] Chu, S. and Majumdar, A., Opportunities and challenges for a sustainable energy future. Nature, 488(7411), 294-303,(2012).
    [2] Yin, J., Zhou, J., Fang, S., and Guo, W., Hydrovoltaic energy on the way. Joule, 4(9), 1852-1855,(2020).
    [3] Zhang, Z., Li, X., Yin, J., Xu, Y., Fei, W., Xue, M., Wang, Q., Zhou, J., and Guo, W., Emerging hydrovoltaic technology. Nature Nanotechnology, 13(12), 1109-1119,(2018).
    [4] Mai, V.-P., Huang, W.-H., and Yang, R.-J., Enhancing ion transport through nanopores in membranes for salinity gradient power generation. ACS ES&T Engineering, 1(12), 1725-1752,(2021).
    [5] Duan, F., Badam, V., Durst, F., and Ward, C., Thermocapillary transport of energy during water evaporation. Physical Review E, 72(5), 056303,(2005).
    [6] Das, S.S., Pedireddi, V.M., Bandopadhyay, A., Saha, P., and Chakraborty, S., Electrical power generation from wet textile mediated by spontaneous nanoscale evaporation. Nano Letters, 19(10), 7191-7200,(2019).
    [7] Wheeler, T.D. and Stroock, A.D., The transpiration of water at negative pressures in a synthetic tree. Nature, 455(7210), 208-212,(2008).
    [8] Zhou, X., Zhang, W., Zhang, C., Tan, Y., Guo, J., Sun, Z., and Deng, X., Harvesting electricity from water evaporation through microchannels of natural wood. ACS Applied Materials & Interfaces, 12(9), 11232-11239,(2020).
    [9] Xue, G., Xu, Y., Ding, T., Li, J., Yin, J., Fei, W., Cao, Y., Yu, J., Yuan, L., and Gong, L., Water-evaporation-induced electricity with nanostructured carbon materials. Nature Nanotechnology, 12(4), 317-321,(2017).
    [10] Yun, T.G., Bae, J., Rothschild, A., and Kim, I.-D., Transpiration driven electrokinetic power generator. ACS Nano, 13(11), 12703-12709,(2019).
    [11] Shao, C., Ji, B., Xu, T., Gao, J., Gao, X., Xiao, Y., Zhao, Y., Chen, N., Jiang, L., and Qu, L., Large-scale production of flexible, high-voltage hydroelectric films based on solid oxides. ACS Applied Materials & Interfaces, 11(34), 30927-30935,(2019).
    [12] Sun, J., Li, P., Qu, J., Lu, X., Xie, Y., Gao, F., Li, Y., Gang, M., Feng, Q., and Liang, H., Electricity generation from a Ni-Al layered double hydroxide-based flexible generator driven by natural water evaporation. Nano Energy, 57, 269-278,(2019).
    [13] Wang, Y., Lee, J., Werber, J.R., and Elimelech, M., Capillary-driven desalination in a synthetic mangrove. Science Advances, 6(8), eaax5253,(2020).
    [14] Li, C., Tian, Z., Liang, L., Yin, S., and Shen, P.K., Electricity generation from capillary-driven ionic solution flow in a three-dimensional graphene membrane. ACS Applied Materials & Interfaces, 11(5), 4922-4929,(2019).
    [15] Li, M., Zong, L., Yang, W., Li, X., You, J., Wu, X., Li, Z., and Li, C., Biological nanofibrous generator for electricity harvest from moist air flow. Advanced Functional Materials, 29(32), 1901798,(2019).
    [16] Zhong, T., Guan, H., Dai, Y., He, H., Xing, L., Zhang, Y., and Xue, X., A self-powered flexibly-arranged gas monitoring system with evaporating rainwater as fuel for building atmosphere big data. Nano Energy, 60, 52-60,(2019).
    [17] Jiang, Z., Jin, J., Xiao, C., and Li, X., Effect of surface modification of carbon black (CB) on the morphology and crystallization of poly (ethylene terephthalate)/CB masterbatch. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 395, 105-115,(2012).
    [18] Vicentini, F.C., Raymundo-Pereira, P.A., Janegitz, B.C., Machado, S.A., and Fatibello-Filho, O., Nanostructured carbon black for simultaneous sensing in biological fluids. Sensors and Actuators B: Chemical, 227, 610-618,(2016).
    [19] Dao, V.-D., Vu, N.H., Dang, H.-L.T., and Yun, S., Recent advances and challenges for water evaporation-induced electricity toward applications. Nano Energy, 85, 105979,(2021).
    [20] Li, X., Min, X., Li, J., Xu, N., Zhu, P., Zhu, B., Zhu, S., and Zhu, J., Storage and recycling of interfacial solar steam enthalpy. Joule, 2(11), 2477-2484,(2018).
    [21] Yang, P., Liu, K., Chen, Q., Li, J., Duan, J., Xue, G., Xu, Z., Xie, W., and Zhou, J., Solar-driven simultaneous steam production and electricity generation from salinity. Energy & Environmental Science, 10(9), 1923-1927,(2017).
    [22] Gao, M., Peh, C.K., Phan, H.T., Zhu, L., and Ho, G.W., Solar absorber gel: localized macro‐nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation. Advanced Energy Materials, 8(25), 1800711,(2018).
    [23] Van Wagenen, R. and Andrade, J., Flat plate streaming potential investigations: hydrodynamics and electrokinetic equivalency. Journal of Colloid and Interface Science, 76(2), 305-314,(1980).
    [24] van der Heyden, F.H., Bonthuis, D.J., Stein, D., Meyer, C., and Dekker, C., Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Letters, 7(4), 1022-1025,(2007).
    [25] Zhang, S., Chu, W., Li, L., and Guo, W., Voltage distribution in porous carbon black films induced by water evaporation. The Journal of Physical Chemistry C, 125(17), 8959-8964,(2021).
    [26] Schoch, R.B., Han, J., and Renaud, P., Transport phenomena in nanofluidics. Reviews of Modern Physics, 80(3), 839,(2008).
    [27] Mai, V.-P. and Yang, R.-J., Active control of salinity-based power generation in nanopores using thermal and pH effects. RSC Advances, 10(32), 18624-18631,(2020).
    [28] Ridaoui, H., Jada, A., Vidal, L., and Donnet, J.-B., Effect of cationic surfactant and block copolymer on carbon black particle surface charge and size. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 278(1-3), 149-159,(2006).
    [29] van der Heyden, F.H., Stein, D., and Dekker, C., Streaming currents in a single nanofluidic channel. Physical Review Letters, 95(11), 116104,(2005).
    [30] Olthuis, W., Schippers, B., Eijkel, J., and van den Berg, A., Energy from streaming current and potential. Sensors and Actuators B: Chemical, 111, 385-389,(2005).

    下載圖示 校內:2024-08-29公開
    校外:2024-08-29公開
    QR CODE