簡易檢索 / 詳目顯示

研究生: 傅冠智
Fu, Guan-Jhih
論文名稱: 生物序列比對在FPGA的實現與驗證
Implementation and Verification of Biological Sequence Alignment in FPGA
指導教授: 黃吉川
Hwang, Chi-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 50
中文關鍵詞: 序列比對Smith-WatermanpFPGA心跳式陣列
外文關鍵詞: Sequence alignment, Smith-Waterman, FPGA, systolic array
相關次數: 點閱:107下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於生物科技的快速發展,DNA定序所需花費的時間不斷縮短以及各種基因體相關研究的進行,越來越多的生物序列資料備建立在基因序列資料庫之中,現今的DNA序列資料庫已含有數百億對的數量,如何在這龐大的資料庫中快速的找出相對應的序列是非常重要的課題。
    序列比對是生物序列資訊中最重要的研究工具,用來比較及分析序列間彼此的相似程度,但在比對的時候,因序列的長度都是非常長,所以分析過程也曠時費工,因此許多的比對演算法被研究出來提高比對效率。
    本論文旨在以FPGA實現一套生物序列比對時常用的Smith-Waterman演算法,並且實際按照理論值進行驗證,為了能更提升比對時間,本篇論文搭配了心跳式陣列,以心跳式陣列的平行處理能力,將傳統演算法低效率的處理過程修改為較高效的處理

    Due to the rapid development of biotechnology, the time required for DNA sequencing has been shortened and various gene-related research has been carried out. More and more biological sequence data have been prepared in the gene se-quence database. Today's DNA sequence database Has been the number of tens of billions of dollars, how in this huge database to quickly find out the corresponding sequence is a very important issue.
    Sequence alignment is the most important research tool in biological se-quence information to compare and analyze the similarity between sequences, but at the time of comparison, the length of the sequence is very long, so the analysis process will waste amount of time,So many of the alignment algorithms are being studied to improve the efficiency of comparison.
    This paper aims to achieve a set of biological sequence alignment using the Smith-Waterman algorithm in FPGA, and actually according to the theoretical value of the verification, in order to improve the comparison time, this paper will use systolic array, parallel processing power of the array, the traditional algorithm of inefficient processing process modified to more efficient processing

    中文摘要 I Abtstract II 誌謝 XI 目錄 XII 圖目錄 XIV 第一章 緒論 17 1-1 研究背景 17 1-2研究動機 3 1-3研究目的 3 第二章 相關研究 5 2-1 編輯距離(Edit Distance) 5 2-2 序列比對(Sequence Alignment) 6 2-3 心跳式陣列(systolic array) 7 2-4 記憶體控制器(Memory Controller) 8 2-5 動態規劃演算法 9 第三章 系統實現與驗證 14 3-1 研究設備 14 3-2 記憶體控制器(Memory controller) 16 3-3 ASCII To Binary 22 3-4 參考序列 24 3-5 Smith-Waterman PE 與Smith-Waterman Array 26 3-6 最大相似分數分析 37 3-7系統架構圖 38 第四章 實驗結果 40 4-1 電路資源比 40 4-2 驗證結果 41 4-2-1 序列長度:6 41 4-2-2 序列長度:50 43 4-2-3 序列長度:150 44 4-2-4 序列長度:200 45 4-2-5 比對時間 46 第五章 結論與未來展望 47 5-1 結論 47 5-2 未來展望 47 參考文獻 48

    [1] Baluška, František, Dieter Volkmann, and Peter W. Barlow. "Cell bodies in a cage." Nature 428.6981 (2004): 371-371..
    [2] Stryer, Lubert. "Biosynthesis of amino acids and heme." Biochemistry 3 (1988): 575-600.
    [3] Boyer, Robert S., and J. Strother Moore. "A fast string searching algorithm." Communications of the ACM 20.10 (1977): 762-772.
    [4] http://www.nobelprize.org/educational/physics/integrated_circuit/history/
    [5] Chelikowsky, J. "Introduction: Silicon in all its Forms." Silicon. Springer Berlin Heidelberg, 2004. 1-22.
    [6] Renovell, Michel, et al. "IS-FPGA: a new symmetric FPGA architecture with implicit scan." Test Conference, 2001. Proceedings. International. IEEE, 2001.
    [7] Blelloch, Guy E., and Bruce M. Maggs. "Parallel algorithms." Algorithms and theory of computation handbook. Chapman & Hall/CRC, 2010.
    [8] Kung, Hsiang-Tsung. "Why systolic architectures?." IEEE computer 15.1 (1982): 37-46.
    [9] Ristad, Eric Sven, and Peter N. Yianilos. "Learning string-edit distance." IEEE Transactions on Pattern Analysis and Machine Intelligence 20.5 (1998): 522-532.
    [10] Masek, William J., and Michael S. Paterson. "A faster algorithm computing string edit distances." Journal of Computer and System sciences 20.1 (1980): 18-31.
    [11] Needleman, S. B. "Needleman-Wunsch algorithm for sequence similarity searches." J Mol Biol 48 (1970): 443-453.
    [12] Thompson, Julie D., Toby Gibson, and Des G. Higgins. "Multiple sequence alignment using ClustalW and ClustalX." Current protocols in bioinformatics (2002): 2-3.
    [13] Smith, Temple F., and Michael S. Waterman. "Identification of common molecular subsequences." Journal of molecular biology 147.1 (1981): 195-197.
    [14] Donnelly, Peter, and Richard D. Friedman. "DNA database searches and the legal consumption of scientific evidence." Michigan Law Review 97.4 (1999): 931-984.
    [15] Carter, John, et al. "Impulse: Building a smarter memory controller." High-Performance Computer Architecture, 1999. Proceedings. Fifth International Symposium On. IEEE, 1999.
    [16] 張廣淵. 存儲子系統. (編) 張廣淵. 計算機組裝與維護教程
    [17] Bellman, Richard. Dynamic programming. Courier Corporation, 2013.
    [18] https://reference.digilentinc.com/_media/nexys4ddr:nexys4ddr_rm.pdf
    [19] Ciletti, Michael D. Advanced digital design with the Verilog HDL. Vol. 1. Upper Saddle River: Prentice Hall, 2003.
    [20] Gill, Arthur. "Introduction to the theory of finite-state machines." (1962).
    [21] Moore, Edward F. "Gedanken-experiments on sequential machines." Automata studies 34 (1956): 129-153.
    [22] Mealy, George H. "A method for synthesizing sequential circuits." Bell Labs Technical Journal 34.5 (1955): 1045-1079.
    [23] Table, A. S. C. I. I. "Ascii table." (2007).
    [24] Mano, M. Morris, Charles R. Kime, and Tom Martin. Logic and computer design fundamentals. Vol. 3. Prentice Hall, 2008.
    [25] Coffman, Ken. Real world FPGA design with Verilog. Pearson Education, 1999.
    [26] Ciletti, Michael D. Advanced digital design with the Verilog HDL. Vol. 1. Upper Saddle River: Prentice Hall, 2003.

    無法下載圖示 校內:2021-06-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE