| 研究生: |
黃薇靜 Huang, Wei-Ching |
|---|---|
| 論文名稱: |
肝醣合成酶激酶-3於血癌中的凋亡角色 Apoptotic Role of Glycogen Synthase Kinase-3 in Leukemia |
| 指導教授: |
林秋烽
Lin, Chiou-Feng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 細胞凋亡 、血癌 、肝醣合成酶激酶-3 、神經醯胺 |
| 外文關鍵詞: | Apoptosis, Leukemia, Glycogen Synthase Kinase-3, Ceramide |
| 相關次數: | 點閱:82 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肝醣合成酶激酶-3 (glycogen synthase kinase-3; GSK-3) 是細胞中的一種絲氨酸/蘇氨酸激酶,對於細胞分化、增殖及凋亡有重要的調控。愈來愈多的研究指出GSK-3與癌症之間的關係,但關於它在血液腫瘤方面的角色並沒有明確的報導。本論文將探討GSK-3在血癌中扮演的凋亡角色。論文中的結果將可提供GSK-3調控血癌細胞走向凋亡的分子機轉,並且提供血癌治療策略上的啟發。論文第一部份為探索GSK-3所媒介之抗血癌作用。諸多血癌用藥已被報導透過誘導內質網壓力 (endoplasmic reticulum stress; ER stress) 進而造成細胞凋亡,因此我以血癌細胞株建立了一個由ER stress所誘導的凋亡模式,在這個細胞模式中檢視GSK-3所媒介之凋亡路徑及訊息傳遞。我的結果指出利用ER stress誘劑tunicamycin (抑制蛋白質醣化作用) 可以在人類血癌細胞株U937及HL-60引發凋亡,主要的凋亡路徑是透過活化GSK-3β,進而誘導其下游硫胱氨酸天門冬胺酸蛋白酶-2 (caspase-2) 活化,caspase-2可引發溶小體不穩定,進而釋出其內部的硫胱胺酸蛋白酶B (cathepsin B) 進入細胞質,cathepsin B可以調控caspase-8及caspase-3的活化,使細胞走向凋亡。然而在帶有Bcr-Abl的慢性骨髓性血癌 (chronic myeloid leukemia; CML) 細胞株K562中,tunicamycin無法誘導GSK-3的活化以及其下游的凋亡路徑,因此我假設在K562細胞中,GSK-3的較難活化可能是引起凋亡抗性的原因,我進而合併給予已知可活化GSK-3 的藥物,發現此方法確實可以促進K562細胞對於ER stress造成之凋亡的感受性。這些結果暗示著GSK-3在抗血癌治療上是重要的凋亡調控蛋白,因此,在論文第二部份,我進一步去證實活化GSK-3是否可成為新的血癌治療策略。CML是一種由bcr-abl融合基因所造成的血液腫瘤,這個融合基因轉譯出之融合蛋白Bcr-Abl可以透過其酪胺酸激酶 (tyrosine kinase) 的活性來促進血癌細胞高度增殖及存活優勢。我發現在K562細胞中表達持續活化的GSK-3β,可以減緩細胞的增殖,並且抑制Bcr-Abl可以活化GSK-3並引起GSK-3媒介之細胞凋亡,這些結果指出活化GSK-3可以負向調控Bcr-Abl的訊息傳遞。我們過去的研究曾指出一種具有腫瘤抑制活性的鞘脂類脂質(sphingolipid)-神經醯胺 (ceramide) 具有活化GSK-3的特性,因此我嘗試利用葡萄糖腦苷脂合成酶 (glucosylceramide synthase) 抑制劑PDMP來累積細胞當中的ceramide進而活化GSK-3,用以促進現行CML的治療。合併PDMP的處理可以增強Bcr-Abl抑制劑所引發之GSK-3活化及細胞凋亡。我也將此合併治療用在具抗藥性的CML細胞株Ba/F3-p210T315I中,這個細胞的Bcr-Abl帶有T315I點突變,又稱為守門員點突變 (gatekeeper mutation),在目前CML治療上,T315I點突變所引起的抗藥性是最強也最難治療的,我發現,無論是在細胞及動物實驗中,Bcr-Abl抑制劑及PDMP合併給予可以顯著性地誘導Ba/F3-p210T315I細胞走向凋亡,進而我也收集了二個帶有T315I點突變的CML病人,以他們的血癌細胞進行體外合併藥物處理,也發現顯著的凋亡誘導效果。Bcr-Abl抑制劑及PDMP合併所產生的致敏效果是透過ceramide累積及Bcr-Abl去活化進而引發GSK-3所調節之細胞凋亡。綜合以上結果,我提供了在血癌中一個由GSK-3所調控之凋亡路徑,並且也進一步建議累積ceramide可以用於克服CML對於治療藥物的抗性。
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase which possesses multiple regulatory roles on cell differentiation, proliferation, and apoptosis. Accumulating studies have implicated GSK-3 in cancer. However, the role of GSK-3 in hematopoietic malignancy is not well understood. This thesis is aimed at examining the apoptotic role of GSK-3 in leukemia. The results may provide insights into the mechanisms by which GSK-3 regulates apoptosis in leukemia and may suggest potential therapeutic strategies. In the first part of this thesis, the GSK-3-mediated anti-leukemic actions were explored. Since various anti-leukemic agents have been reported to exert their apoptotic ability through induction of endoplasmic reticulum (ER) stress, I established a model of ER stress-induced apoptosis using leukemic cell lines to check the apoptotic signaling pathways regulated by GSK-3. Results showed that ER stressor tunicamyin, a protein glycosylation inhibitor, can induce apoptosis in human monocytic leukemia/lymphoma U937 and acute myeloid leukemia HL-60 cells. The apoptotic signaling is mainly through GSK-3β activation followed by caspase-2-mediated lysosomal membrane permeabilization (LMP). LMP leads to lysosomal destabilization and cause cathepsin B relocation from the lysosome to the cytosol. Activated cathepsin B mediates caspase-8 and caspase-3 activation followed by apoptosis. However, in Bcr-Abl-positive chronic myeloid leukemia (CML) K562 cells, tunicamycin failed to activate GSK-3 as well as subsequent apoptotic pathways. I therefore hypothesized that inactivation of GSK-3 in K562 cells might contribute to apoptosis resistance. Pharmacologic manipulation to activate GSK-3 sensitized K562 cells to ER stress-induced apoptosis. For anti-leukemia therapy, these data suggest GSK-3 as an important regulator in triggering apoptosis. Therefore, in the second part of this thesis, I further verified the concept of activating GSK-3 as a new anti-leukemic strategy. CML is a hematopoietic malignancy caused by the presence of bcr-abl fusion gene which encodes a potent oncoprotein Bcr-Abl. Bcr-Abl promotes cell hyper-proliferation and confers pro-survival advantages through its tyrosine kinase activity. In K562 cells, I showed that activating GSK-3β caused growth inhibition. Inhibiting Bcr-Abl also activated GSK-3 to promote apoptosis. The data indicated that GSK-3 activation negatively regulated Bcr-Abl signaling. Our previous study showed a tumor suppressor sphingolipid ceramide is a potent GSK-3 activator. Therefore, using a glucosylceramide synthase inhibitor PDMP, I tried to accumulate endogenous ceramide to activate GSK-3 to enhance the efficacy of current CML therapy. Combining PDMP enhanced Bcr-Abl inhibitor-induced GSK-3 activation and apoptosis. I further tested the efficacy of Bcr-Abl inhibitor/PDMP combination in drug resistant cells which carried T315I gatekeeper mutation on the Bcr-Abl kinase domain. The T315I mutation is now the most drug-resistant and problematic mutation in clinical management of CML. Of note, combining Bcr-Abl inhibitor with PDMP significantly induced apoptosis in Ba/F3-p210T315I cells in vitro and in vivo and in primary cells from two CML T315I patients. The sensitization effect occurs through ceramide accumulation and Bcr-Abl inactivation followed by GSK-3-dependent apoptosis. Taken together, these data provide a GSK-3-initiated pathway in leukemia apoptosis and further suggest accumulating ceramide as a potential therapeutic strategy to overcome emerging drug resistance in CML treatment.
Abe, A., Radin, N. S., Shayman, J. A., Wotring, L. L., Zipkin, R. E., Sivakumar, R., Ruggieri, J. M., Carson, K. G., and Ganem, B. (1995). Structural and stereochemical studies of potent inhibitors of glucosylceramide synthase and tumor cell growth. J Lipid Res 36, 611-621.
Abrahamsson, A. E., Geron, I., Gotlib, J., Dao, K. H., Barroga, C. F., Newton, I. G., Giles, F. J., Durocher, J., Creusot, R. S., Karimi, M., et al. (2009). Glycogen synthase kinase 3beta missplicing contributes to leukemia stem cell generation. Proc Natl Acad Sci U S A 106, 3925-3929.
Adrian, F. J., Ding, Q., Sim, T., Velentza, A., Sloan, C., Liu, Y., Zhang, G., Hur, W., Ding, S., Manley, P., et al. (2006). Allosteric inhibitors of Bcr-abl-dependent cell proliferation. Nat Chem Biol 2, 95-102.
Aichberger, K. J., Mayerhofer, M., Krauth, M. T., Skvara, H., Florian, S., Sonneck, K., Akgul, C., Derdak, S., Pickl, W. F., Wacheck, V., et al. (2005). Identification of mcl-1 as a BCR/ABL-dependent target in chronic myeloid leukemia (CML): evidence for cooperative antileukemic effects of imatinib and mcl-1 antisense oligonucleotides. Blood 105, 3303-3311.
Alnemri, E. S. (1997). Mammalian cell death proteases: a family of highly conserved aspartate specific cysteine proteases. J Cell Biochem 64, 33-42.
Ashkenazi, A., and Dixit, V. M. (1998). Death receptors: signaling and modulation. Science 281, 1305-1308.
Askmyr, M., Quach, J., and Purton, L. E. (2011). Effects of the bone marrow microenvironment on hematopoietic malignancy. Bone 48, 115-120.
Balaraman, Y., Limaye, A. R., Levey, A. I., and Srinivasan, S. (2006). Glycogen synthase kinase 3beta and Alzheimer's disease: pathophysiological and therapeutic significance. Cell Mol Life Sci 63, 1226-1235.
Baltzis, D., Pluquet, O., Papadakis, A. I., Kazemi, S., Qu, L. K., and Koromilas, A. E. (2007). The eIF2alpha kinases PERK and PKR activate glycogen synthase kinase 3 to promote the proteasomal degradation of p53. J Biol Chem 282, 31675-31687.
Bartram, C. R., de Klein, A., Hagemeijer, A., van Agthoven, T., Geurts van Kessel, A., Bootsma, D., Grosveld, G., Ferguson-Smith, M. A., Davies, T., Stone, M., and et al. (1983). Translocation of c-ab1 oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia. Nature 306, 277-280.
Basu, M., Dastgheib, S., Girzadas, M. A., O'Donnell, P. H., Westervelt, C. W., Li, Z., Inokuchi, J., and Basu, S. (1998). Hydrophobic nature of mammalian ceramide glycanases: purified from rabbit and rat mammary tissues. Acta Biochim Pol 45, 327-342.
Bauer, K., Dowejko, A., Bosserhoff, A. K., Reichert, T. E., and Bauer, R. J. (2009). P-cadherin induces an epithelial-like phenotype in oral squamous cell carcinoma by GSK-3beta-mediated Snail phosphorylation. Carcinogenesis 30, 1781-1788.
Bedi, A., Zehnbauer, B. A., Barber, J. P., Sharkis, S. J., and Jones, R. J. (1994). Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood 83, 2038-2044.
Ben-Neriah, Y., Daley, G. Q., Mes-Masson, A. M., Witte, O. N., and Baltimore, D. (1986). The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 233, 212-214.
Beurel, E., Kornprobst, M., Blivet-Van Eggelpoel, M. J., Cadoret, A., Capeau, J., and Desbois-Mouthon, C. (2005). GSK-3beta reactivation with LY294002 sensitizes hepatoma cells to chemotherapy-induced apoptosis. Int J Oncol 27, 215-222.
Bhat, R. V., Leonov, S., Luthman, J., Scott, C. W., and Lee, C. M. (2002). Interactions between GSK3beta and caspase signalling pathways during NGF deprivation induced cell death. J Alzheimers Dis 4, 291-301.
Bidere, N., Lorenzo, H. K., Carmona, S., Laforge, M., Harper, F., Dumont, C., and Senik, A. (2003). Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J Biol Chem 278, 31401-31411.
Bieberich, E., Freischutz, B., Suzuki, M., and Yu, R. K. (1999). Differential effects of glycolipid biosynthesis inhibitors on ceramide-induced cell death in neuroblastoma cells. J Neurochem 72, 1040-1049.
Bijur, G. N., De Sarno, P., and Jope, R. S. (2000). Glycogen synthase kinase-3beta facilitates staurosporine- and heat shock-induced apoptosis. Protection by lithium. J Biol Chem 275, 7583-7590.
Bilim, V., Ougolkov, A., Yuuki, K., Naito, S., Kawazoe, H., Muto, A., Oya, M., Billadeau, D., Motoyama, T., and Tomita, Y. (2009). Glycogen synthase kinase-3: a new therapeutic target in renal cell carcinoma. Br J Cancer 101, 2005-2014.
Boatright, K. M., and Salvesen, G. S. (2003). Mechanisms of caspase activation. Curr Opin Cell Biol 15, 725-731.
Boelens, J., Lust, S., Offner, F., Bracke, M. E., and Vanhoecke, B. W. (2007). Review. The endoplasmic reticulum: a target for new anticancer drugs. In Vivo 21, 215-226.
Boise, L. H., Gonzalez-Garcia, M., Postema, C. E., Ding, L., Lindsten, T., Turka, L. A., Mao, X., Nunez, G., and Thompson, C. B. (1993). bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74, 597-608.
Bourbon, N. A., Sandirasegarane, L., and Kester, M. (2002). Ceramide-induced inhibition of Akt is mediated through protein kinase Czeta: implications for growth arrest. J Biol Chem 277, 3286-3292.
Boya, P., Andreau, K., Poncet, D., Zamzami, N., Perfettini, J. L., Metivier, D., Ojcius, D. M., Jaattela, M., and Kroemer, G. (2003a). Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med 197, 1323-1334.
Boya, P., Cohen, I., Zamzami, N., Vieira, H. L., and Kroemer, G. (2002). Endoplasmic reticulum stress-induced cell death requires mitochondrial membrane permeabilization. Cell Death Differ 9, 465-467.
Boya, P., Gonzalez-Polo, R. A., Poncet, D., Andreau, K., Vieira, H. L., Roumier, T., Perfettini, J. L., and Kroemer, G. (2003b). Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene 22, 3927-3936.
Breckenridge, D. G., Germain, M., Mathai, J. P., Nguyen, M., and Shore, G. C. (2003). Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22, 8608-8618.
Brenner, C., Cadiou, H., Vieira, H. L., Zamzami, N., Marzo, I., Xie, Z., Leber, B., Andrews, D., Duclohier, H., Reed, J. C., and Kroemer, G. (2000). Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene 19, 329-336.
Brewster, J. L., Linseman, D. A., Bouchard, R. J., Loucks, F. A., Precht, T. A., Esch, E. A., and Heidenreich, K. A. (2006). Endoplasmic reticulum stress and trophic factor withdrawal activate distinct signaling cascades that induce glycogen synthase kinase-3 beta and a caspase-9-dependent apoptosis in cerebellar granule neurons. Mol Cell Neurosci 32, 242-253.
Buss, H., Dorrie, A., Schmitz, M. L., Frank, R., Livingstone, M., Resch, K., and Kracht, M. (2004). Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. J Biol Chem 279, 49571-49574.
Cao, X., Bennett, R. L., and May, W. S. (2008). c-Myc and caspase-2 are involved in activating Bax during cytotoxic drug-induced apoptosis. J Biol Chem 283, 14490-14496.
Caricchio, R., D'Adamio, L., and Cohen, P. L. (2002). Fas, ceramide and serum withdrawal induce apoptosis via a common pathway in a type II Jurkat cell line. Cell Death Differ 9, 574-580.
Carlesso, N., Frank, D. A., and Griffin, J. D. (1996). Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J Exp Med 183, 811-820.
Cerretti, D. P., Kozlosky, C. J., Mosley, B., Nelson, N., Van Ness, K., Greenstreet, T. A., March, C. J., Kronheim, S. R., Druck, T., Cannizzaro, L. A., and et al. (1992). Molecular cloning of the interleukin-1 beta converting enzyme. Science 256, 97-100.
Chalfant, C. E., Rathman, K., Pinkerman, R. L., Wood, R. E., Obeid, L. M., Ogretmen, B., and Hannun, Y. A. (2002). De novo ceramide regulates the alternative splicing of caspase 9 and Bcl-x in A549 lung adenocarcinoma cells. Dependence on protein phosphatase-1. J Biol Chem 277, 12587-12595.
Chen, C. L., Lin, C. F., Chang, W. T., Huang, W. C., Teng, C. F., and Lin, Y. S. (2008). Ceramide induces p38 MAPK and JNK activation through a mechanism involving a thioredoxin-interacting protein-mediated pathway. Blood 111, 4365-4374.
Chen, C. L., Lin, C. F., Chiang, C. W., Jan, M. S., and Lin, Y. S. (2006). Lithium inhibits ceramide- and etoposide-induced protein phosphatase 2A methylation, Bcl-2 dephosphorylation, caspase-2 activation, and apoptosis. Mol Pharmacol 70, 510-517.
Chen, G., Bower, K. A., Ma, C., Fang, S., Thiele, C. J., and Luo, J. (2004). Glycogen synthase kinase 3beta (GSK3beta) mediates 6-hydroxydopamine-induced neuronal death. FASEB J 18, 1162-1164.
Cheung, H. H., Lynn Kelly, N., Liston, P., and Korneluk, R. G. (2006). Involvement of caspase-2 and caspase-9 in endoplasmic reticulum stress-induced apoptosis: a role for the IAPs. Exp Cell Res 312, 2347-2357.
Chipuk, J. E., Bouchier-Hayes, L., and Green, D. R. (2006). Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ 13, 1396-1402.
Chittenden, T., Harrington, E. A., O'Connor, R., Flemington, C., Lutz, R. J., Evan, G. I., and Guild, B. C. (1995). Induction of apoptosis by the Bcl-2 homologue Bak. Nature 374, 733-736.
Chu, B., Soncin, F., Price, B. D., Stevenson, M. A., and Calderwood, S. K. (1996). Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem 271, 30847-30857.
Chwieralski, C. E., Welte, T., and Buhling, F. (2006). Cathepsin-regulated apoptosis. Apoptosis 11, 143-149.
Ciani, L., and Salinas, P. C. (2005). WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci 6, 351-362.
Cichon, S., Buervenich, S., Kirov, G., Akula, N., Dimitrova, A., Green, E., Schumacher, J., Klopp, N., Becker, T., Ohlraun, S., et al. (2004). Lack of support for a genetic association of the XBP1 promoter polymorphism with bipolar disorder in probands of European origin. Nat Genet 36, 783-784; author reply 784-785.
Cirman, T., Oresic, K., Mazovec, G. D., Turk, V., Reed, J. C., Myers, R. M., Salvesen, G. S., and Turk, B. (2004). Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem 279, 3578-3587.
Cleary, M. L., Smith, S. D., and Sklar, J. (1986). Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 47, 19-28.
Cline, M. J. (1994). The molecular basis of leukemia. N Engl J Med 330, 328-336.
Cohen, G. M. (1997). Caspases: the executioners of apoptosis. The Biochemical journal 326 ( Pt 1), 1-16.
Cohen, P., and Frame, S. (2001). The renaissance of GSK3. Nat Rev Mol Cell Biol 2, 769-776.
Cole, A., Frame, S., and Cohen, P. (2004). Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event. The Biochemical journal 377, 249-255.
Coluccia, A. M., Vacca, A., Dunach, M., Mologni, L., Redaelli, S., Bustos, V. H., Benati, D., Pinna, L. A., and Gambacorti-Passerini, C. (2007). Bcr-Abl stabilizes beta-catenin in chronic myeloid leukemia through its tyrosine phosphorylation. EMBO J 26, 1456-1466.
Conus, S., Perozzo, R., Reinheckel, T., Peters, C., Scapozza, L., Yousefi, S., and Simon, H. U. (2008). Caspase-8 is activated by cathepsin D initiating neutrophil apoptosis during the resolution of inflammation. J Exp Med 205, 685-698.
Cools, J., DeAngelo, D. J., Gotlib, J., Stover, E. H., Legare, R. D., Cortes, J., Kutok, J., Clark, J., Galinsky, I., Griffin, J. D., et al. (2003). A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 348, 1201-1214.
Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M., and Hemmings, B. A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785-789.
Crowder, R. J., and Freeman, R. S. (2000). Glycogen synthase kinase-3 beta activity is critical for neuronal death caused by inhibiting phosphatidylinositol 3-kinase or Akt but not for death caused by nerve growth factor withdrawal. J Biol Chem 275, 34266-34271.
Dahmer, M. K. (2005). Caspases-2, -3, and -7 are involved in thapsigargin-induced apoptosis of SH-SY5Y neuroblastoma cells. J Neurosci Res 80, 576-583.
Daley, G. Q., Van Etten, R. A., and Baltimore, D. (1990). Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247, 824-830.
De Toni, F., Racaud-Sultan, C., Chicanne, G., Mas, V. M., Cariven, C., Mesange, F., Salles, J. P., Demur, C., Allouche, M., Payrastre, B., et al. (2006). A crosstalk between the Wnt and the adhesion-dependent signaling pathways governs the chemosensitivity of acute myeloid leukemia. Oncogene 25, 3113-3122.
Degterev, A., Boyce, M., and Yuan, J. (2003). A decade of caspases. Oncogene 22, 8543-8567.
Deininger, M. W., Goldman, J. M., and Melo, J. V. (2000). The molecular biology of chronic myeloid leukemia. Blood 96, 3343-3356.
Di Sano, F., Ferraro, E., Tufi, R., Achsel, T., Piacentini, M., and Cecconi, F. (2006). Endoplasmic reticulum stress induces apoptosis by an apoptosome-dependent but caspase 12-independent mechanism. J Biol Chem 281, 2693-2700.
Ding, Q., He, X., Xia, W., Hsu, J. M., Chen, C. T., Li, L. Y., Lee, D. F., Yang, J. Y., Xie, X., Liu, J. C., and Hung, M. C. (2007). Myeloid cell leukemia-1 inversely correlates with glycogen synthase kinase-3beta activity and associates with poor prognosis in human breast cancer. Cancer Res 67, 4564-4571.
Doble, B. W., and Woodgett, J. R. (2003). GSK-3: tricks of the trade for a multi-tasking kinase. Journal of cell science 116, 1175-1186.
Dobrowsky, R. T., Kamibayashi, C., Mumby, M. C., and Hannun, Y. A. (1993). Ceramide activates heterotrimeric protein phosphatase 2A. J Biol Chem 268, 15523-15530.
Donato, N. J., Wu, J. Y., Stapley, J., Gallick, G., Lin, H., Arlinghaus, R., and Talpaz, M. (2003). BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 101, 690-698.
Druker, B. J., Guilhot, F., O'Brien, S. G., Gathmann, I., Kantarjian, H., Gattermann, N., Deininger, M. W., Silver, R. T., Goldman, J. M., Stone, R. M., et al. (2006). Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355, 2408-2417.
Druker, B. J., Tamura, S., Buchdunger, E., Ohno, S., Segal, G. M., Fanning, S., Zimmermann, J., and Lydon, N. B. (1996). Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2, 561-566.
Elefanty, A. G., Hariharan, I. K., and Cory, S. (1990). bcr-abl, the hallmark of chronic myeloid leukaemia in man, induces multiple haemopoietic neoplasms in mice. EMBO J 9, 1069-1078.
Embi, N., Rylatt, D. B., and Cohen, P. (1980). Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem 107, 519-527.
Faderl, S., Talpaz, M., Estrov, Z., and Kantarjian, H. M. (1999). Chronic myelogenous leukemia: biology and therapy. Ann Intern Med 131, 207-219.
Farago, M., Dominguez, I., Landesman-Bollag, E., Xu, X., Rosner, A., Cardiff, R. D., and Seldin, D. C. (2005). Kinase-inactive glycogen synthase kinase 3beta promotes Wnt signaling and mammary tumorigenesis. Cancer Res 65, 5792-5801.
Feldstein, A. E., Werneburg, N. W., Canbay, A., Guicciardi, M. E., Bronk, S. F., Rydzewski, R., Burgart, L. J., and Gores, G. J. (2004). Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology 40, 185-194.
Feldstein, A. E., Werneburg, N. W., Li, Z., Bronk, S. F., and Gores, G. J. (2006). Bax inhibition protects against free fatty acid-induced lysosomal permeabilization. Am J Physiol Gastrointest Liver Physiol 290, G1339-1346.
Ferri, K. F., and Kroemer, G. (2001). Organelle-specific initiation of cell death pathways. Nat Cell Biol 3, E255-263.
Fischer, H., Koenig, U., Eckhart, L., and Tschachler, E. (2002). Human caspase 12 has acquired deleterious mutations. Biochem Biophys Res Commun 293, 722-726.
Foghsgaard, L., Wissing, D., Mauch, D., Lademann, U., Bastholm, L., Boes, M., Elling, F., Leist, M., and Jaattela, M. (2001). Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol 153, 999-1010.
Fox, T. E., Houck, K. L., O'Neill, S. M., Nagarajan, M., Stover, T. C., Pomianowski, P. T., Unal, O., Yun, J. K., Naides, S. J., and Kester, M. (2007). Ceramide recruits and activates protein kinase C zeta (PKC zeta) within structured membrane microdomains. J Biol Chem 282, 12450-12457.
Frame, S., and Cohen, P. (2001). GSK3 takes centre stage more than 20 years after its discovery. The Biochemical journal 359, 1-16.
Frank, D. A., and Varticovski, L. (1996). BCR/abl leads to the constitutive activation of Stat proteins, and shares an epitope with tyrosine phosphorylated Stats. Leukemia 10, 1724-1730.
Gambacorti-Passerini, C., Barni, R., le Coutre, P., Zucchetti, M., Cabrita, G., Cleris, L., Rossi, F., Gianazza, E., Brueggen, J., Cozens, R., et al. (2000). Role of alpha1 acid glycoprotein in the in vivo resistance of human BCR-ABL(+) leukemic cells to the abl inhibitor STI571. J Natl Cancer Inst 92, 1641-1650.
Garcia-Ruiz, C., Colell, A., Mari, M., Morales, A., Calvo, M., Enrich, C., and Fernandez-Checa, J. C. (2003). Defective TNF-alpha-mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. J Clin Invest 111, 197-208.
Geley, S., Hartmann, B. L., and Kofler, R. (1997). Ceramides induce a form of apoptosis in human acute lymphoblastic leukemia cells that is inhibited by Bcl-2, but not by CrmA. FEBS Lett 400, 15-18.
Gishizky, M. L., Johnson-White, J., and Witte, O. N. (1993). Efficient transplantation of BCR-ABL-induced chronic myelogenous leukemia-like syndrome in mice. Proc Natl Acad Sci U S A 90, 3755-3759.
Gishizky, M. L., and Witte, O. N. (1992). Initiation of deregulated growth of multipotent progenitor cells by bcr-abl in vitro. Science 256, 836-839.
Goga, A., McLaughlin, J., Afar, D. E., Saffran, D. C., and Witte, O. N. (1995). Alternative signals to RAS for hematopoietic transformation by the BCR-ABL oncogene. Cell 82, 981-988.
Gorre, M. E., Mohammed, M., Ellwood, K., Hsu, N., Paquette, R., Rao, P. N., and Sawyers, C. L. (2001). Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293, 876-880.
Goswami, R., Kilkus, J., Dawson, S. A., and Dawson, G. (1999). Overexpression of Akt (protein kinase B) confers protection against apoptosis and prevents formation of ceramide in response to pro-apoptotic stimuli. J Neurosci Res 57, 884-893.
Gouaze, V., Liu, Y. Y., Prickett, C. S., Yu, J. Y., Giuliano, A. E., and Cabot, M. C. (2005). Glucosylceramide synthase blockade down-regulates P-glycoprotein and resensitizes multidrug-resistant breast cancer cells to anticancer drugs. Cancer Res 65, 3861-3867.
Green, D. R., and Reed, J. C. (1998). Mitochondria and apoptosis. Science 281, 1309-1312.
Groffen, J., Stephenson, J. R., Heisterkamp, N., de Klein, A., Bartram, C. R., and Grosveld, G. (1984). Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36, 93-99.
Gu, H., Chen, X., Gao, G., and Dong, H. (2008). Caspase-2 functions upstream of mitochondria in endoplasmic reticulum stress-induced apoptosis by bortezomib in human myeloma cells. Mol Cancer Ther 7, 2298-2307.
Guicciardi, M. E., Bronk, S. F., Werneburg, N. W., Yin, X. M., and Gores, G. J. (2005). Bid is upstream of lysosome-mediated caspase 2 activation in tumor necrosis factor alpha-induced hepatocyte apoptosis. Gastroenterology 129, 269-284.
Guicciardi, M. E., Deussing, J., Miyoshi, H., Bronk, S. F., Svingen, P. A., Peters, C., Kaufmann, S. H., and Gores, G. J. (2000). Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 106, 1127-1137.
Guicciardi, M. E., Leist, M., and Gores, G. J. (2004). Lysosomes in cell death. Oncogene 23, 2881-2890.
Hacki, J., Egger, L., Monney, L., Conus, S., Rosse, T., Fellay, I., and Borner, C. (2000). Apoptotic crosstalk between the endoplasmic reticulum and mitochondria controlled by Bcl-2. Oncogene 19, 2286-2295.
Hannun, Y. A., and Linardic, C. M. (1993). Sphingolipid breakdown products: anti-proliferative and tumor-suppressor lipids. Biochim Biophys Acta 1154, 223-236.
Hannun, Y. A., and Luberto, C. (2000). Ceramide in the eukaryotic stress response. Trends Cell Biol 10, 73-80.
Hannun, Y. A., and Obeid, L. M. (1995). Ceramide: an intracellular signal for apoptosis. Trends Biochem Sci 20, 73-77.
Hannun, Y. A., and Obeid, L. M. (2008). Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9, 139-150.
Harding, H. P., and Ron, D. (2002). Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51 Suppl 3, S455-461.
Harris, M. H., and Thompson, C. B. (2000). The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ 7, 1182-1191.
Hartigan, J. A., Xiong, W. C., and Johnson, G. V. (2001). Glycogen synthase kinase 3beta is tyrosine phosphorylated by PYK2. Biochem Biophys Res Commun 284, 485-489.
Hazlehurst, L. A., Bewry, N. N., Nair, R. R., and Pinilla-Ibarz, J. (2009). Signaling networks associated with BCR-ABL-dependent transformation. Cancer Control 16, 100-107.
He, B. (2006). Viruses, endoplasmic reticulum stress, and interferon responses. Cell Death Differ 13, 393-403.
He, B., Meng, Y. H., and Mivechi, N. F. (1998). Glycogen synthase kinase 3beta and extracellular signal-regulated kinase inactivate heat shock transcription factor 1 by facilitating the disappearance of transcriptionally active granules after heat shock. Mol Cell Biol 18, 6624-6633.
Heakal, Y., and Kester, M. (2009). Nanoliposomal short-chain ceramide inhibits agonist-dependent translocation of neurotensin receptor 1 to structured membrane microdomains in breast cancer cells. Mol Cancer Res 7, 724-734.
Heinrich, M., Neumeyer, J., Jakob, M., Hallas, C., Tchikov, V., Winoto-Morbach, S., Wickel, M., Schneider-Brachert, W., Trauzold, A., Hethke, A., and Schutze, S. (2004). Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death Differ 11, 550-563.
Heinrich, M., Wickel, M., Schneider-Brachert, W., Sandberg, C., Gahr, J., Schwandner, R., Weber, T., Saftig, P., Peters, C., Brunner, J., et al. (1999). Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J 18, 5252-5263.
Hetman, M., Cavanaugh, J. E., Kimelman, D., and Xia, Z. (2000). Role of glycogen synthase kinase-3beta in neuronal apoptosis induced by trophic withdrawal. J Neurosci 20, 2567-2574.
Hetman, M., Hsuan, S. L., Habas, A., Higgins, M. J., and Xia, Z. (2002). ERK1/2 antagonizes glycogen synthase kinase-3beta-induced apoptosis in cortical neurons. J Biol Chem 277, 49577-49584.
Hitomi, J., Katayama, T., Eguchi, Y., Kudo, T., Taniguchi, M., Koyama, Y., Manabe, T., Yamagishi, S., Bando, Y., Imaizumi, K., et al. (2004). Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol 165, 347-356.
Hochhaus, A., Kreil, S., Corbin, A. S., La Rosee, P., Muller, M. C., Lahaye, T., Hanfstein, B., Schoch, C., Cross, N. C., Berger, U., et al. (2002). Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 16, 2190-2196.
Hoeflich, K. P., Luo, J., Rubie, E. A., Tsao, M. S., Jin, O., and Woodgett, J. R. (2000). Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406, 86-90.
Hongisto, V., Smeds, N., Brecht, S., Herdegen, T., Courtney, M. J., and Coffey, E. T. (2003). Lithium blocks the c-Jun stress response and protects neurons via its action on glycogen synthase kinase 3. Mol Cell Biol 23, 6027-6036.
Hu, Y., Gu, X., Li, R., Luo, Q., and Xu, Y. (2010). Glycogen synthase kinase-3beta inhibition induces nuclear factor-kappaB-mediated apoptosis in pediatric acute lymphocyte leukemia cells. J Exp Clin Cancer Res 29, 154.
Huang, W. C., Chen, C. L., Lin, Y. S., and Lin, C. F. (2011). Apoptotic sphingolipid ceramide in cancer therapy. J Lipids 2011, 565316.
Ilaria, R. L., Jr., and Van Etten, R. A. (1996). P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem 271, 31704-31710.
Illmer, T., Schaich, M., Platzbecker, U., Freiberg-Richter, J., Oelschlagel, U., von Bonin, M., Pursche, S., Bergemann, T., Ehninger, G., and Schleyer, E. (2004). P-glycoprotein-mediated drug efflux is a resistance mechanism of chronic myelogenous leukemia cells to treatment with imatinib mesylate. Leukemia 18, 401-408.
Ivaska, J., Nissinen, L., Immonen, N., Eriksson, J. E., Kahari, V. M., and Heino, J. (2002). Integrin alpha 2 beta 1 promotes activation of protein phosphatase 2A and dephosphorylation of Akt and glycogen synthase kinase 3 beta. Mol Cell Biol 22, 1352-1359.
Jarvis, W. D., Fornari, F. A., Jr., Browning, J. L., Gewirtz, D. A., Kolesnick, R. N., and Grant, S. (1994). Attenuation of ceramide-induced apoptosis by diglyceride in human myeloid leukemia cells. J Biol Chem 269, 31685-31692.
Jie, H., Donghua, H., Xingkui, X., Liang, G., Wenjun, W., Xiaoyan, H., and Zhen, C. (2007). Homoharringtonine-induced apoptosis of MDS cell line MUTZ-1 cells is mediated by the endoplasmic reticulum stress pathway. Leuk Lymphoma 48, 964-977.
Jin, Z., and El-Deiry, W. S. (2005). Overview of cell death signaling pathways. Cancer Biol Ther 4, 139-163.
Jin, Z. H., Kurosu, T., Yamaguchi, M., Arai, A., and Miura, O. (2005). Hematopoietic cytokines enhance Chk1-dependent G2/M checkpoint activation by etoposide through the Akt/GSK3 pathway to inhibit apoptosis. Oncogene 24, 1973-1981.
Johansson, A. C., Steen, H., Ollinger, K., and Roberg, K. (2003). Cathepsin D mediates cytochrome c release and caspase activation in human fibroblast apoptosis induced by staurosporine. Cell Death Differ 10, 1253-1259.
Jope, R. S., and Johnson, G. V. (2004). The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29, 95-102.
Jope, R. S., Yuskaitis, C. J., and Beurel, E. (2007). Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res 32, 577-595.
Kagedal, K., Johansson, U., and Ollinger, K. (2001a). The lysosomal protease cathepsin D mediates apoptosis induced by oxidative stress. FASEB J 15, 1592-1594.
Kagedal, K., Zhao, M., Svensson, I., and Brunk, U. T. (2001b). Sphingosine-induced apoptosis is dependent on lysosomal proteases. The Biochemical journal 359, 335-343.
Kakiuchi, C., Iwamoto, K., Ishiwata, M., Bundo, M., Kasahara, T., Kusumi, I., Tsujita, T., Okazaki, Y., Nanko, S., Kunugi, H., et al. (2003). Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. Nat Genet 35, 171-175.
Kang, T., Wei, Y., Honaker, Y., Yamaguchi, H., Appella, E., Hung, M. C., and Piwnica-Worms, H. (2008). GSK-3 beta targets Cdc25A for ubiquitin-mediated proteolysis, and GSK-3 beta inactivation correlates with Cdc25A overproduction in human cancers. Cancer Cell 13, 36-47.
Kannoji, A., Phukan, S., Sudher Babu, V., and Balaji, V. N. (2008). GSK3beta: a master switch and a promising target. Expert Opin Ther Targets 12, 1443-1455.
Kantarjian, H., Giles, F., Wunderle, L., Bhalla, K., O'Brien, S., Wassmann, B., Tanaka, C., Manley, P., Rae, P., Mietlowski, W., et al. (2006a). Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 354, 2542-2551.
Kantarjian, H. M., Keating, M. J., Talpaz, M., Walters, R. S., Smith, T. L., Cork, A., McCredie, K. B., and Freireich, E. J. (1987). Chronic myelogenous leukemia in blast crisis. Analysis of 242 patients. Am J Med 83, 445-454.
Kantarjian, H. M., Talpaz, M., Giles, F., O'Brien, S., and Cortes, J. (2006b). New insights into the pathophysiology of chronic myeloid leukemia and imatinib resistance. Ann Intern Med 145, 913-923.
Karahatay, S., Thomas, K., Koybasi, S., Senkal, C. E., Elojeimy, S., Liu, X., Bielawski, J., Day, T. A., Gillespie, M. B., Sinha, D., et al. (2007). Clinical relevance of ceramide metabolism in the pathogenesis of human head and neck squamous cell carcinoma (HNSCC): attenuation of C(18)-ceramide in HNSCC tumors correlates with lymphovascular invasion and nodal metastasis. Cancer Lett 256, 101-111.
Kelliher, M. A., McLaughlin, J., Witte, O. N., and Rosenberg, N. (1990). Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL. Proc Natl Acad Sci U S A 87, 6649-6653.
Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26, 239-257.
Khan, N. I., Bradstock, K. F., and Bendall, L. J. (2007). Activation of Wnt/beta-catenin pathway mediates growth and survival in B-cell progenitor acute lymphoblastic leukaemia. Br J Haematol 138, 338-348.
Kim, A. J., Shi, Y., Austin, R. C., and Werstuck, G. H. (2005). Valproate protects cells from ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3. Journal of cell science 118, 89-99.
Kim, H. J., Oh, J. E., Kim, S. W., Chun, Y. J., and Kim, M. Y. (2008a). Ceramide induces p38 MAPK-dependent apoptosis and Bax translocation via inhibition of Akt in HL-60 cells. Cancer Lett 260, 88-95.
Kim, I., Xu, W., and Reed, J. C. (2008b). Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7, 1013-1030.
Kim, R., Emi, M., Tanabe, K., and Murakami, S. (2006). Role of the unfolded protein response in cell death. Apoptosis 11, 5-13.
King, T. D., Bijur, G. N., and Jope, R. S. (2001). Caspase-3 activation induced by inhibition of mitochondrial complex I is facilitated by glycogen synthase kinase-3beta and attenuated by lithium. Brain Res 919, 106-114.
Kockeritz, L., Doble, B., Patel, S., and Woodgett, J. R. (2006). Glycogen synthase kinase-3--an overview of an over-achieving protein kinase. Curr Drug Targets 7, 1377-1388.
Kolesnick, R. N., Goni, F. M., and Alonso, A. (2000). Compartmentalization of ceramide signaling: physical foundations and biological effects. J Cell Physiol 184, 285-300.
Kolesnick, R. N., Haimovitz-Friedman, A., and Fuks, Z. (1994). The sphingomyelin signal transduction pathway mediates apoptosis for tumor necrosis factor, Fas, and ionizing radiation. Biochem Cell Biol 72, 471-474.
Kong, J. Y., Klassen, S. S., and Rabkin, S. W. (2005). Ceramide activates a mitochondrial p38 mitogen-activated protein kinase: a potential mechanism for loss of mitochondrial transmembrane potential and apoptosis. Mol Cell Biochem 278, 39-51.
Kotliarova, S., Pastorino, S., Kovell, L. C., Kotliarov, Y., Song, H., Zhang, W., Bailey, R., Maric, D., Zenklusen, J. C., Lee, J., and Fine, H. A. (2008). Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. Cancer Res 68, 6643-6651.
Koybasi, S., Senkal, C. E., Sundararaj, K., Spassieva, S., Bielawski, J., Osta, W., Day, T. A., Jiang, J. C., Jazwinski, S. M., Hannun, Y. A., et al. (2004). Defects in cell growth regulation by C18:0-ceramide and longevity assurance gene 1 in human head and neck squamous cell carcinomas. J Biol Chem 279, 44311-44319.
Kozopas, K. M., Yang, T., Buchan, H. L., Zhou, P., and Craig, R. W. (1993). MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci U S A 90, 3516-3520.
Krammer, P. H. (2000). CD95's deadly mission in the immune system. Nature 407, 789-795.
Kroemer, G., and Jaattela, M. (2005). Lysosomes and autophagy in cell death control. Nat Rev Cancer 5, 886-897.
Kroemer, G., and Reed, J. C. (2000). Mitochondrial control of cell death. Nat Med 6, 513-519.
Kujawski, L., and Talpaz, M. (2007). Strategies for overcoming imatinib resistance in chronic myeloid leukemia. Leuk Lymphoma 48, 2310-2322.
Kurinna, S. M., Tsao, C. C., Nica, A. F., Jiffar, T., and Ruvolo, P. P. (2004). Ceramide promotes apoptosis in lung cancer-derived A549 cells by a mechanism involving c-Jun NH2-terminal kinase. Cancer Res 64, 7852-7856.
Lee, H. C., Tsai, J. N., Liao, P. Y., Tsai, W. Y., Lin, K. Y., Chuang, C. C., Sun, C. K., Chang, W. C., and Tsai, H. J. (2007). Glycogen synthase kinase 3 alpha and 3 beta have distinct functions during cardiogenesis of zebrafish embryo. BMC Dev Biol 7, 93.
Lee, L., Abe, A., and Shayman, J. A. (1999). Improved inhibitors of glucosylceramide synthase. J Biol Chem 274, 14662-14669.
Leis, H., Segrelles, C., Ruiz, S., Santos, M., and Paramio, J. M. (2002). Expression, localization, and activity of glycogen synthase kinase 3beta during mouse skin tumorigenesis. Mol Carcinog 35, 180-185.
Lemasters, J. J. (2005). Dying a thousand deaths: redundant pathways from different organelles to apoptosis and necrosis. Gastroenterology 129, 351-360.
Lesort, M., Jope, R. S., and Johnson, G. V. (1999). Insulin transiently increases tau phosphorylation: involvement of glycogen synthase kinase-3beta and Fyn tyrosine kinase. J Neurochem 72, 576-584.
Li, H., Zhu, H., Xu, C. J., and Yuan, J. (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501.
Li, J., Lee, B., and Lee, A. S. (2006). Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J Biol Chem 281, 7260-7270.
Li, J., Xia, X., Ke, Y., Nie, H., Smith, M. A., and Zhu, X. (2007). Trichosanthin induced apoptosis in HL-60 cells via mitochondrial and endoplasmic reticulum stress signaling pathways. Biochim Biophys Acta 1770, 1169-1180.
Lin, C. F., Chen, C. L., Chiang, C. W., Jan, M. S., Huang, W. C., and Lin, Y. S. (2007). GSK-3beta acts downstream of PP2A and the PI 3-kinase-Akt pathway, and upstream of caspase-2 in ceramide-induced mitochondrial apoptosis. Journal of cell science 120, 2935-2943.
Lin, C. F., Chen, C. L., and Lin, Y. S. (2006). Ceramide in apoptotic signaling and anticancer therapy. Curr Med Chem 13, 1609-1616.
Lin, T., Genestier, L., Pinkoski, M. J., Castro, A., Nicholas, S., Mogil, R., Paris, F., Fuks, Z., Schuchman, E. H., Kolesnick, R. N., and Green, D. R. (2000). Role of acidic sphingomyelinase in Fas/CD95-mediated cell death. J Biol Chem 275, 8657-8663.
Linder, S., and Shoshan, M. C. (2005). Lysosomes and endoplasmic reticulum: targets for improved, selective anticancer therapy. Drug Resist Updat 8, 199-204.
Lindholm, D., Wootz, H., and Korhonen, L. (2006). ER stress and neurodegenerative diseases. Cell Death Differ 13, 385-392.
Linseman, D. A., Butts, B. D., Precht, T. A., Phelps, R. A., Le, S. S., Laessig, T. A., Bouchard, R. J., Florez-McClure, M. L., and Heidenreich, K. A. (2004). Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci 24, 9993-10002.
Liu, N., Scofield, V. L., Qiang, W., Yan, M., Kuang, X., and Wong, P. K. (2006). Interaction between endoplasmic reticulum stress and caspase 8 activation in retrovirus MoMuLV-ts1-infected astrocytes. Virology 348, 398-405.
Liu, X., Ryland, L., Yang, J., Liao, A., Aliaga, C., Watts, R., Tan, S. F., Kaiser, J., Shanmugavelandy, S. S., Rogers, A., et al. (2010). Targeting of survivin by nanoliposomal ceramide induces complete remission in a rat model of NK-LGL leukemia. Blood 116, 4192-4201.
Llambi, F., and Green, D. R. (2011). Apoptosis and oncogenesis: give and take in the BCL-2 family. Curr Opin Genet Dev 21, 12-20.
Loberg, R. D., Vesely, E., and Brosius, F. C., 3rd (2002). Enhanced glycogen synthase kinase-3beta activity mediates hypoxia-induced apoptosis of vascular smooth muscle cells and is prevented by glucose transport and metabolism. J Biol Chem 277, 41667-41673.
Lochhead, P. A., Kinstrie, R., Sibbet, G., Rawjee, T., Morrice, N., and Cleghon, V. (2006). A chaperone-dependent GSK3beta transitional intermediate mediates activation-loop autophosphorylation. Mol Cell 24, 627-633.
Locksley, R. M., Killeen, N., and Lenardo, M. J. (2001). The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487-501.
Lu, D., Zhao, Y., Tawatao, R., Cottam, H. B., Sen, M., Leoni, L. M., Kipps, T. J., Corr, M., and Carson, D. A. (2004). Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 101, 3118-3123.
Luo, J. (2009). Glycogen synthase kinase 3beta (GSK3beta) in tumorigenesis and cancer chemotherapy. Cancer Lett 273, 194-200.
Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X. (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-490.
Ma, C., Wang, J., Gao, Y., Gao, T. W., Chen, G., Bower, K. A., Odetallah, M., Ding, M., Ke, Z., and Luo, J. (2007). The role of glycogen synthase kinase 3beta in the transformation of epidermal cells. Cancer Res 67, 7756-7764.
Ma, Y., and Hendershot, L. M. (2004). The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer 4, 966-977.
Macanas-Pirard, P., Yaacob, N. S., Lee, P. C., Holder, J. C., Hinton, R. H., and Kass, G. E. (2005). Glycogen synthase kinase-3 mediates acetaminophen-induced apoptosis in human hepatoma cells. J Pharmacol Exp Ther 313, 780-789.
Maguer-Satta, V., Burl, S., Liu, L., Damen, J., Chahine, H., Krystal, G., Eaves, A., and Eaves, C. (1998). BCR-ABL accelerates C2-ceramide-induced apoptosis. Oncogene 16, 237-248.
Mandic, A., Hansson, J., Linder, S., and Shoshan, M. C. (2003). Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling. J Biol Chem 278, 9100-9106.
Manoukian, A. S., and Woodgett, J. R. (2002). Role of glycogen synthase kinase-3 in cancer: regulation by Wnts and other signaling pathways. Adv Cancer Res 84, 203-229.
Marchesini, N., and Hannun, Y. A. (2004). Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem Cell Biol 82, 27-44.
Markou, T., Cullingford, T. E., Giraldo, A., Weiss, S. C., Alsafi, A., Fuller, S. J., Clerk, A., and Sugden, P. H. (2008). Glycogen synthase kinases 3alpha and 3beta in cardiac myocytes: regulation and consequences of their inhibition. Cell Signal 20, 206-218.
Martin, S. J., Newmeyer, D. D., Mathias, S., Farschon, D. M., Wang, H. G., Reed, J. C., Kolesnick, R. N., and Green, D. R. (1995). Cell-free reconstitution of Fas-, UV radiation- and ceramide-induced apoptosis. EMBO J 14, 5191-5200.
Maurer, U., Charvet, C., Wagman, A. S., Dejardin, E., and Green, D. R. (2006). Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell 21, 749-760.
Mazieres, J., You, L., He, B., Xu, Z., Lee, A. Y., Mikami, I., McCormick, F., and Jablons, D. M. (2005). Inhibition of Wnt16 in human acute lymphoblastoid leukemia cells containing the t(1;19) translocation induces apoptosis. Oncogene 24, 5396-5400.
McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y., and Holbrook, N. J. (2001). Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21, 1249-1259.
McDonnell, T. J., Deane, N., Platt, F. M., Nunez, G., Jaeger, U., McKearn, J. P., and Korsmeyer, S. J. (1989). bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 57, 79-88.
McGahon, A., Bissonnette, R., Schmitt, M., Cotter, K. M., Green, D. R., and Cotter, T. G. (1994). BCR-ABL maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death. Blood 83, 1179-1187.
McLaughlin, J., Chianese, E., and Witte, O. N. (1987). In vitro transformation of immature hematopoietic cells by the P210 BCR/ABL oncogene product of the Philadelphia chromosome. Proc Natl Acad Sci U S A 84, 6558-6562.
Meares, G. P., Zmijewska, A. A., and Jope, R. S. (2008). HSP105 interacts with GRP78 and GSK3 and promotes ER stress-induced caspase-3 activation. Cell Signal 20, 347-358.
Melo, J. V. (1996). The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood 88, 2375-2384.
Melo, J. V., and Barnes, D. J. (2007). Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer 7, 441-453.
Mian, A. A., Oancea, C., Zhao, Z., Ottmann, O. G., and Ruthardt, M. (2009). Oligomerization inhibition, combined with allosteric inhibition, abrogates the transformation potential of T315I-positive BCR/ABL. Leukemia 23, 2242-2247.
Miura, M., Zhu, H., Rotello, R., Hartwieg, E. A., and Yuan, J. (1993). Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75, 653-660.
Mora, A., Sabio, G., Risco, A. M., Cuenda, A., Alonso, J. C., Soler, G., and Centeno, F. (2002). Lithium blocks the PKB and GSK3 dephosphorylation induced by ceramide through protein phosphatase-2A. Cell Signal 14, 557-562.
Morales, A., Lee, H., Goni, F. M., Kolesnick, R., and Fernandez-Checa, J. C. (2007). Sphingolipids and cell death. Apoptosis 12, 923-939.
Morrison, J. A., Gulley, M. L., Pathmanathan, R., and Raab-Traub, N. (2004). Differential signaling pathways are activated in the Epstein-Barr virus-associated malignancies nasopharyngeal carcinoma and Hodgkin lymphoma. Cancer Res 64, 5251-5260.
Nakagawa, T., and Yuan, J. (2000). Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894.
Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B. A., and Yuan, J. (2000). Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403, 98-103.
Naughton, R., Quiney, C., Turner, S. D., and Cotter, T. G. (2009). Bcr-Abl-mediated redox regulation of the PI3K/AKT pathway. Leukemia 23, 1432-1440.
Nica, A. F., Tsao, C. C., Watt, J. C., Jiffar, T., Kurinna, S., Jurasz, P., Konopleva, M., Andreeff, M., Radomski, M. W., and Ruvolo, P. P. (2008). Ceramide promotes apoptosis in chronic myelogenous leukemia-derived K562 cells by a mechanism involving caspase-8 and JNK. Cell Cycle 7, 3362-3370.
O'Connor, L., Strasser, A., O'Reilly, L. A., Hausmann, G., Adams, J. M., Cory, S., and Huang, D. C. (1998). Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J 17, 384-395.
O'Driscoll, C., Wallace, D., and Cotter, T. G. (2007). bFGF promotes photoreceptor cell survival in vitro by PKA-mediated inactivation of glycogen synthase kinase 3beta and CREB-dependent Bcl-2 up-regulation. J Neurochem 103, 860-870.
O'Hare, T., Eide, C. A., and Deininger, M. W. (2007). Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood 110, 2242-2249.
Obeid, L. M., Linardic, C. M., Karolak, L. A., and Hannun, Y. A. (1993). Programmed cell death induced by ceramide. Science 259, 1769-1771.
Obeng, E. A., and Boise, L. H. (2005). Caspase-12 and caspase-4 are not required for caspase-dependent endoplasmic reticulum stress-induced apoptosis. J Biol Chem 280, 29578-29587.
Ogretmen, B., and Hannun, Y. A. (2004). Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4, 604-616.
Ogretmen, B., Pettus, B. J., Rossi, M. J., Wood, R., Usta, J., Szulc, Z., Bielawska, A., Obeid, L. M., and Hannun, Y. A. (2002). Biochemical mechanisms of the generation of endogenous long chain ceramide in response to exogenous short chain ceramide in the A549 human lung adenocarcinoma cell line. Role for endogenous ceramide in mediating the action of exogenous ceramide. J Biol Chem 277, 12960-12969.
Oltvai, Z. N., Milliman, C. L., and Korsmeyer, S. J. (1993). Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74, 609-619.
Ottmann, O. G., Druker, B. J., Sawyers, C. L., Goldman, J. M., Reiffers, J., Silver, R. T., Tura, S., Fischer, T., Deininger, M. W., Schiffer, C. A., et al. (2002). A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood 100, 1965-1971.
Ougolkov, A. V., and Billadeau, D. D. (2006). Targeting GSK-3: a promising approach for cancer therapy? Future Oncol 2, 91-100.
Ougolkov, A. V., Bone, N. D., Fernandez-Zapico, M. E., Kay, N. E., and Billadeau, D. D. (2007). Inhibition of glycogen synthase kinase-3 activity leads to epigenetic silencing of nuclear factor kappaB target genes and induction of apoptosis in chronic lymphocytic leukemia B cells. Blood 110, 735-742.
Ougolkov, A. V., Fernandez-Zapico, M. E., Savoy, D. N., Urrutia, R. A., and Billadeau, D. D. (2005). Glycogen synthase kinase-3beta participates in nuclear factor kappaB-mediated gene transcription and cell survival in pancreatic cancer cells. Cancer Res 65, 2076-2081.
Pae, H. O., Jeong, S. O., Jeong, G. S., Kim, K. M., Kim, H. S., Kim, S. A., Kim, Y. C., Kang, S. D., Kim, B. N., and Chung, H. T. (2007). Curcumin induces pro-apoptotic endoplasmic reticulum stress in human leukemia HL-60 cells. Biochem Biophys Res Commun 353, 1040-1045.
Pap, M., and Cooper, G. M. (1998). Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J Biol Chem 273, 19929-19932.
Pap, M., and Cooper, G. M. (2002). Role of translation initiation factor 2B in control of cell survival by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta signaling pathway. Mol Cell Biol 22, 578-586.
Pastorino, J. G., Hoek, J. B., and Shulga, N. (2005). Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res 65, 10545-10554.
Pastorino, J. G., Shulga, N., and Hoek, J. B. (2002). Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem 277, 7610-7618.
Perry, R. J., and Ridgway, N. D. (2005). Molecular mechanisms and regulation of ceramide transport. Biochim Biophys Acta 1734, 220-234.
Pettus, B. J., Chalfant, C. E., and Hannun, Y. A. (2002). Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta 1585, 114-125.
Platt, F. M., Neises, G. R., Dwek, R. A., and Butters, T. D. (1994). N-butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. J Biol Chem 269, 8362-8365.
Pluk, H., Dorey, K., and Superti-Furga, G. (2002). Autoinhibition of c-Abl. Cell 108, 247-259.
Powell, D. J., Hajduch, E., Kular, G., and Hundal, H. S. (2003). Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism. Mol Cell Biol 23, 7794-7808.
Puissant, A., Colosetti, P., Robert, G., Cassuto, J. P., Raynaud, S., and Auberger, P. (2010). Cathepsin B release after imatinib-mediated lysosomal membrane permeabilization triggers BCR-ABL cleavage and elimination of chronic myelogenous leukemia cells. Leukemia 24, 115-124.
Pushkareva, M., Obeid, L. M., and Hannun, Y. A. (1995). Ceramide: an endogenous regulator of apoptosis and growth suppression. Immunol Today 16, 294-297.
Qu, L., Huang, S., Baltzis, D., Rivas-Estilla, A. M., Pluquet, O., Hatzoglou, M., Koumenis, C., Taya, Y., Yoshimura, A., and Koromilas, A. E. (2004). Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3beta. Genes Dev 18, 261-277.
Quintas-Cardama, A., Kantarjian, H., and Cortes, J. (2007). Flying under the radar: the new wave of BCR-ABL inhibitors. Nat Rev Drug Discov 6, 834-848.
Rahmani, M., Davis, E. M., Crabtree, T. R., Habibi, J. R., Nguyen, T. K., Dent, P., and Grant, S. (2007). The kinase inhibitor sorafenib induces cell death through a process involving induction of endoplasmic reticulum stress. Mol Cell Biol 27, 5499-5513.
Rani, C. S., Abe, A., Chang, Y., Rosenzweig, N., Saltiel, A. R., Radin, N. S., and Shayman, J. A. (1995). Cell cycle arrest induced by an inhibitor of glucosylceramide synthase. Correlation with cyclin-dependent kinases. J Biol Chem 270, 2859-2867.
Rao, R., Hao, C. M., and Breyer, M. D. (2004). Hypertonic stress activates glycogen synthase kinase 3beta-mediated apoptosis of renal medullary interstitial cells, suppressing an NFkappaB-driven cyclooxygenase-2-dependent survival pathway. J Biol Chem 279, 3949-3955.
Rao, R. V., and Bredesen, D. E. (2004). Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr Opin Cell Biol 16, 653-662.
Rao, R. V., Hermel, E., Castro-Obregon, S., del Rio, G., Ellerby, L. M., Ellerby, H. M., and Bredesen, D. E. (2001). Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 276, 33869-33874.
Ravagnan, L., Roumier, T., and Kroemer, G. (2002). Mitochondria, the killer organelles and their weapons. J Cell Physiol 192, 131-137.
Rayasam, G. V., Tulasi, V. K., Sodhi, R., Davis, J. A., and Ray, A. (2009). Glycogen synthase kinase 3: more than a namesake. Br J Pharmacol 156, 885-898.
Reed, J. C. (1998). Bcl-2 family proteins. Oncogene 17, 3225-3236.
Ren, R. (2005). Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 5, 172-183.
Rosen, H., and Goetzl, E. J. (2005). Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol 5, 560-570.
Rowley, J. D. (1973). Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290-293.
Ruel, L., Bourouis, M., Heitzler, P., Pantesco, V., and Simpson, P. (1993). Drosophila shaggy kinase and rat glycogen synthase kinase-3 have conserved activities and act downstream of Notch. Nature 362, 557-560.
Ruvolo, P. P., Clark, W., Mumby, M., Gao, F., and May, W. S. (2002). A functional role for the B56 alpha-subunit of protein phosphatase 2A in ceramide-mediated regulation of Bcl2 phosphorylation status and function. J Biol Chem 277, 22847-22852.
Ruvolo, P. P., Deng, X., Ito, T., Carr, B. K., and May, W. S. (1999). Ceramide induces Bcl2 dephosphorylation via a mechanism involving mitochondrial PP2A. J Biol Chem 274, 20296-20300.
Saddoughi, S. A., Song, P., and Ogretmen, B. (2008). Roles of bioactive sphingolipids in cancer biology and therapeutics. Subcell Biochem 49, 413-440.
Saelens, X., Festjens, N., Vande Walle, L., van Gurp, M., van Loo, G., and Vandenabeele, P. (2004). Toxic proteins released from mitochondria in cell death. Oncogene 23, 2861-2874.
Salinas, M., Lopez-Valdaliso, R., Martin, D., Alvarez, A., and Cuadrado, A. (2000). Inhibition of PKB/Akt1 by C2-ceramide involves activation of ceramide-activated protein phosphatase in PC12 cells. Mol Cell Neurosci 15, 156-169.
Samanta, A. K., Lin, H., Sun, T., Kantarjian, H., and Arlinghaus, R. B. (2006). Janus kinase 2: a critical target in chronic myelogenous leukemia. Cancer Res 66, 6468-6472.
Sanchez, J. F., Sniderhan, L. F., Williamson, A. L., Fan, S., Chakraborty-Sett, S., and Maggirwar, S. B. (2003). Glycogen synthase kinase 3beta-mediated apoptosis of primary cortical astrocytes involves inhibition of nuclear factor kappaB signaling. Mol Cell Biol 23, 4649-4662.
Sawafuji, K., Miyakawa, Y., Weisberg, E., Griffin, J. D., Ikeda, Y., and Kizaki, M. (2003). Aminopeptidase inhibitors inhibit proliferation and induce apoptosis of K562 and STI571-resistant K562 cell lines through the MAPK and GSK-3beta pathways. Leuk Lymphoma 44, 1987-1996.
Sawyers, C. L. (1999). Chronic myeloid leukemia. N Engl J Med 340, 1330-1340.
Sawyers, C. L. (2002). Disabling Abl-perspectives on Abl kinase regulation and cancer therapeutics. Cancer Cell 1, 13-15.
Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K. J., Debatin, K. M., Krammer, P. H., and Peter, M. E. (1998). Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17, 1675-1687.
Schiffmann, S., Sandner, J., Schmidt, R., Birod, K., Wobst, I., Schmidt, H., Angioni, C., Geisslinger, G., and Grosch, S. (2009). The selective COX-2 inhibitor celecoxib modulates sphingolipid synthesis. J Lipid Res 50, 32-40.
Schindler, T., Bornmann, W., Pellicena, P., Miller, W. T., Clarkson, B., and Kuriyan, J. (2000). Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289, 1938-1942.
Schubert, K. M., Scheid, M. P., and Duronio, V. (2000). Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473. J Biol Chem 275, 13330-13335.
Schwandner, R., Wiegmann, K., Bernardo, K., Kreder, D., and Kronke, M. (1998). TNF receptor death domain-associated proteins TRADD and FADD signal activation of acid sphingomyelinase. J Biol Chem 273, 5916-5922.
Seeling, J. M., Miller, J. R., Gil, R., Moon, R. T., White, R., and Virshup, D. M. (1999). Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. Science 283, 2089-2091.
Segui, B., Andrieu-Abadie, N., Jaffrezou, J. P., Benoist, H., and Levade, T. (2006). Sphingolipids as modulators of cancer cell death: potential therapeutic targets. Biochim Biophys Acta 1758, 2104-2120.
Segui, B., Cuvillier, O., Adam-Klages, S., Garcia, V., Malagarie-Cazenave, S., Leveque, S., Caspar-Bauguil, S., Coudert, J., Salvayre, R., Kronke, M., and Levade, T. (2001). Involvement of FAN in TNF-induced apoptosis. J Clin Invest 108, 143-151.
Senkal, C. E., Ponnusamy, S., Bielawski, J., Hannun, Y. A., and Ogretmen, B. (2010). Antiapoptotic roles of ceramide-synthase-6-generated C16-ceramide via selective regulation of the ATF6/CHOP arm of ER-stress-response pathways. FASEB J 24, 296-308.
Senkal, C. E., Ponnusamy, S., Rossi, M. J., Bialewski, J., Sinha, D., Jiang, J. C., Jazwinski, S. M., Hannun, Y. A., and Ogretmen, B. (2007). Role of human longevity assurance gene 1 and C18-ceramide in chemotherapy-induced cell death in human head and neck squamous cell carcinomas. Mol Cancer Ther 6, 712-722.
Shah, N. P., and Sawyers, C. L. (2003). Mechanisms of resistance to STI571 in Philadelphia chromosome-associated leukemias. Oncogene 22, 7389-7395.
Shah, N. P., Tran, C., Lee, F. Y., Chen, P., Norris, D., and Sawyers, C. L. (2004). Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305, 399-401.
Shaner, R. L., Allegood, J. C., Park, H., Wang, E., Kelly, S., Haynes, C. A., Sullards, M. C., and Merrill, A. H., Jr. (2009). Quantitative analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion trap mass spectrometers. J Lipid Res 50, 1692-1707.
Shet, A. S., Jahagirdar, B. N., and Verfaillie, C. M. (2002). Chronic myelogenous leukemia: mechanisms underlying disease progression. Leukemia 16, 1402-1411.
Shuai, K., Halpern, J., ten Hoeve, J., Rao, X., and Sawyers, C. L. (1996). Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia. Oncogene 13, 247-254.
Sirard, C., Laneuville, P., and Dick, J. E. (1994). Expression of bcr-abl abrogates factor-dependent growth of human hematopoietic M07E cells by an autocrine mechanism. Blood 83, 1575-1585.
Skorski, T., Bellacosa, A., Nieborowska-Skorska, M., Majewski, M., Martinez, R., Choi, J. K., Trotta, R., Wlodarski, P., Perrotti, D., Chan, T. O., et al. (1997). Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J 16, 6151-6161.
Skorski, T., Kanakaraj, P., Nieborowska-Skorska, M., Ratajczak, M. Z., Wen, S. C., Zon, G., Gewirtz, A. M., Perussia, B., and Calabretta, B. (1995). Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 86, 726-736.
Smith, K. M., Yacobi, R., and Van Etten, R. A. (2003). Autoinhibition of Bcr-Abl through its SH3 domain. Mol Cell 12, 27-37.
Smyth, M. J., Obeid, L. M., and Hannun, Y. A. (1997). Ceramide: a novel lipid mediator of apoptosis. Adv Pharmacol 41, 133-154.
Smyth, M. J., Perry, D. K., Zhang, J., Poirier, G. G., Hannun, Y. A., and Obeid, L. M. (1996). prICE: a downstream target for ceramide-induced apoptosis and for the inhibitory action of Bcl-2. The Biochemical journal 316 ( Pt 1), 25-28.
Somervaille, T. C., Linch, D. C., and Khwaja, A. (2001). Growth factor withdrawal from primary human erythroid progenitors induces apoptosis through a pathway involving glycogen synthase kinase-3 and Bax. Blood 98, 1374-1381.
Song, L., De Sarno, P., and Jope, R. S. (2002). Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stress-induced caspase-3 activation. J Biol Chem 277, 44701-44708.
Spassieva, S. D., Mullen, T. D., Townsend, D. M., and Obeid, L. M. (2009). Disruption of ceramide synthesis by CerS2 down-regulation leads to autophagy and the unfolded protein response. The Biochemical journal 424, 273-283.
Spierings, D., McStay, G., Saleh, M., Bender, C., Chipuk, J., Maurer, U., and Green, D. R. (2005). Connected to death: the (unexpurgated) mitochondrial pathway of apoptosis. Science 310, 66-67.
Srinivasan, S., Ohsugi, M., Liu, Z., Fatrai, S., Bernal-Mizrachi, E., and Permutt, M. A. (2005). Endoplasmic reticulum stress-induced apoptosis is partly mediated by reduced insulin signaling through phosphatidylinositol 3-kinase/Akt and increased glycogen synthase kinase-3beta in mouse insulinoma cells. Diabetes 54, 968-975.
Stoica, B. A., Movsesyan, V. A., Knoblach, S. M., and Faden, A. I. (2005). Ceramide induces neuronal apoptosis through mitogen-activated protein kinases and causes release of multiple mitochondrial proteins. Mol Cell Neurosci 29, 355-371.
Stoica, B. A., Movsesyan, V. A., Lea, P. M. t., and Faden, A. I. (2003). Ceramide-induced neuronal apoptosis is associated with dephosphorylation of Akt, BAD, FKHR, GSK-3beta, and induction of the mitochondrial-dependent intrinsic caspase pathway. Mol Cell Neurosci 22, 365-382.
Stoka, V., Turk, B., Schendel, S. L., Kim, T. H., Cirman, T., Snipas, S. J., Ellerby, L. M., Bredesen, D., Freeze, H., Abrahamson, M., et al. (2001). Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem 276, 3149-3157.
Stoka, V., Turk, B., and Turk, V. (2005). Lysosomal cysteine proteases: structural features and their role in apoptosis. IUBMB Life 57, 347-353.
Strasser, A., Harris, A. W., Bath, M. L., and Cory, S. (1990). Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348, 331-333.
Tagaram, H. R., Divittore, N. A., Barth, B. M., Kaiser, J. M., Avella, D., Kimchi, E. T., Jiang, Y., Isom, H. C., Kester, M., and Staveley-O'Carroll, K. F. (2011). Nanoliposomal ceramide prevents in vivo growth of hepatocellular carcinoma. Gut 60, 695-701.
Talpaz, M., Shah, N. P., Kantarjian, H., Donato, N., Nicoll, J., Paquette, R., Cortes, J., O'Brien, S., Nicaise, C., Bleickardt, E., et al. (2006). Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 354, 2531-2541.
Tamborini, E., Bonadiman, L., Greco, A., Albertini, V., Negri, T., Gronchi, A., Bertulli, R., Colecchia, M., Casali, P. G., Pierotti, M. A., and Pilotti, S. (2004). A new mutation in the KIT ATP pocket causes acquired resistance to imatinib in a gastrointestinal stromal tumor patient. Gastroenterology 127, 294-299.
Tamborini, E., Pricl, S., Negri, T., Lagonigro, M. S., Miselli, F., Greco, A., Gronchi, A., Casali, P. G., Ferrone, M., Fermeglia, M., et al. (2006). Functional analyses and molecular modeling of two c-Kit mutations responsible for imatinib secondary resistance in GIST patients. Oncogene 25, 6140-6146.
Tan, J., Geng, L., Yazlovitskaya, E. M., and Hallahan, D. E. (2006a). Protein kinase B/Akt-dependent phosphorylation of glycogen synthase kinase-3beta in irradiated vascular endothelium. Cancer Res 66, 2320-2327.
Tan, J., Zhuang, L., Leong, H. S., Iyer, N. G., Liu, E. T., and Yu, Q. (2005). Pharmacologic modulation of glycogen synthase kinase-3beta promotes p53-dependent apoptosis through a direct Bax-mediated mitochondrial pathway in colorectal cancer cells. Cancer Res 65, 9012-9020.
Tan, Y., Dourdin, N., Wu, C., De Veyra, T., Elce, J. S., and Greer, P. A. (2006b). Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis. J Biol Chem 281, 16016-16024.
ten Hoeve, J., Arlinghaus, R. B., Guo, J. Q., Heisterkamp, N., and Groffen, J. (1994). Tyrosine phosphorylation of CRKL in Philadelphia+ leukemia. Blood 84, 1731-1736.
Thomas, J., Wang, L., Clark, R. E., and Pirmohamed, M. (2004). Active transport of imatinib into and out of cells: implications for drug resistance. Blood 104, 3739-3745.
Tinel, A., and Tschopp, J. (2004). The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 304, 843-846.
Tran, M. A., Smith, C. D., Kester, M., and Robertson, G. P. (2008). Combining nanoliposomal ceramide with sorafenib synergistically inhibits melanoma and breast cancer cell survival to decrease tumor development. Clin Cancer Res 14, 3571-3581.
Tsujimoto, Y., and Croce, C. M. (1986). Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc Natl Acad Sci U S A 83, 5214-5218.
Tsujimoto, Y., Finger, L. R., Yunis, J., Nowell, P. C., and Croce, C. M. (1984). Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226, 1097-1099.
Turenne, G. A., and Price, B. D. (2001). Glycogen synthase kinase3 beta phosphorylates serine 33 of p53 and activates p53's transcriptional activity. BMC Cell Biol 2, 12.
Turzanski, J., Grundy, M., Shang, S., Russell, N., and Pallis, M. (2005). P-glycoprotein is implicated in the inhibition of ceramide-induced apoptosis in TF-1 acute myeloid leukemia cells by modulation of the glucosylceramide synthase pathway. Exp Hematol 33, 62-72.
Upton, J. P., Austgen, K., Nishino, M., Coakley, K. M., Hagen, A., Han, D., Papa, F. R., and Oakes, S. A. (2008). Caspase-2 cleavage of BID is a critical apoptotic signal downstream of endoplasmic reticulum stress. Mol Cell Biol 28, 3943-3951.
Vancompernolle, K., Van Herreweghe, F., Pynaert, G., Van de Craen, M., De Vos, K., Totty, N., Sterling, A., Fiers, W., Vandenabeele, P., and Grooten, J. (1998). Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity. FEBS Lett 438, 150-158.
Vaux, D. L., Cory, S., and Adams, J. M. (1988). Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440-442.
Verheij, M., Bose, R., Lin, X. H., Yao, B., Jarvis, W. D., Grant, S., Birrer, M. J., Szabo, E., Zon, L. I., Kyriakis, J. M., et al. (1996). Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 380, 75-79.
von Bubnoff, N., Sandherr, M., Schlimok, G., Andreesen, R., Peschel, C., and Duyster, J. (2005). Myeloid blast crisis evolving during imatinib treatment of an FIP1L1-PDGFR alpha-positive chronic myeloproliferative disease with prominent eosinophilia. Leukemia 19, 286-287.
Vunnam, R. R., and Radin, N. S. (1980). Analogs of ceramide that inhibit glucocerebroside synthetase in mouse brain. Chem Phys Lipids 26, 265-278.
Wang, G., Silva, J., Krishnamurthy, K., Tran, E., Condie, B. G., and Bieberich, E. (2005). Direct binding to ceramide activates protein kinase Czeta before the formation of a pro-apoptotic complex with PAR-4 in differentiating stem cells. J Biol Chem 280, 26415-26424.
Wang, K., Yin, X. M., Chao, D. T., Milliman, C. L., and Korsmeyer, S. J. (1996). BID: a novel BH3 domain-only death agonist. Genes Dev 10, 2859-2869.
Wang, S. H., Yang, W. B., Liu, Y. C., Chiu, Y. H., Chen, C. T., Kao, P. F., and Lin, C. M. (2011). A potent sphingomyelinase inhibitor from Cordyceps mycelia contributes its cytoprotective effect against oxidative stress in macrophages. J Lipid Res 52, 471-479.
Wang, Z., Smith, K. S., Murphy, M., Piloto, O., Somervaille, T. C., and Cleary, M. L. (2008). Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy. Nature 455, 1205-1209.
Warnakulasuriyarachchi, D., Cerquozzi, S., Cheung, H. H., and Holcik, M. (2004). Translational induction of the inhibitor of apoptosis protein HIAP2 during endoplasmic reticulum stress attenuates cell death and is mediated via an inducible internal ribosome entry site element. J Biol Chem 279, 17148-17157.
Watcharasit, P., Bijur, G. N., Song, L., Zhu, J., Chen, X., and Jope, R. S. (2003). Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53. J Biol Chem 278, 48872-48879.
Watcharasit, P., Bijur, G. N., Zmijewski, J. W., Song, L., Zmijewska, A., Chen, X., Johnson, G. V., and Jope, R. S. (2002). Direct, activating interaction between glycogen synthase kinase-3beta and p53 after DNA damage. Proc Natl Acad Sci U S A 99, 7951-7955.
Weisberg, E., Manley, P. W., Breitenstein, W., Bruggen, J., Cowan-Jacob, S. W., Ray, A., Huntly, B., Fabbro, D., Fendrich, G., Hall-Meyers, E., et al. (2005). Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7, 129-141.
Werneburg, N., Guicciardi, M. E., Yin, X. M., and Gores, G. J. (2004). TNF-alpha-mediated lysosomal permeabilization is FAN and caspase 8/Bid dependent. Am J Physiol Gastrointest Liver Physiol 287, G436-443.
Werneburg, N. W., Guicciardi, M. E., Bronk, S. F., Kaufmann, S. H., and Gores, G. J. (2007). Tumor necrosis factor-related apoptosis-inducing ligand activates a lysosomal pathway of apoptosis that is regulated by Bcl-2 proteins. J Biol Chem 282, 28960-28970.
White-Gilbertson, S., Mullen, T., Senkal, C., Lu, P., Ogretmen, B., Obeid, L., and Voelkel-Johnson, C. (2009). Ceramide synthase 6 modulates TRAIL sensitivity and nuclear translocation of active caspase-3 in colon cancer cells. Oncogene 28, 1132-1141.
Willaime-Morawek, S., Brami-Cherrier, K., Mariani, J., Caboche, J., and Brugg, B. (2003). C-Jun N-terminal kinases/c-Jun and p38 pathways cooperate in ceramide-induced neuronal apoptosis. Neuroscience 119, 387-397.
Willaime, S., Vanhoutte, P., Caboche, J., Lemaigre-Dubreuil, Y., Mariani, J., and Brugg, B. (2001). Ceramide-induced apoptosis in cortical neurons is mediated by an increase in p38 phosphorylation and not by the decrease in ERK phosphorylation. Eur J Neurosci 13, 2037-2046.
Wong, S., and Witte, O. N. (2004). The BCR-ABL story: bench to bedside and back. Annu Rev Immunol 22, 247-306.
Wu, J., and Kaufman, R. J. (2006). From acute ER stress to physiological roles of the Unfolded Protein Response. Cell Death Differ 13, 374-384.
Xie, S., Wang, Y., Liu, J., Sun, T., Wilson, M. B., Smithgall, T. E., and Arlinghaus, R. B. (2001). Involvement of Jak2 tyrosine phosphorylation in Bcr-Abl transformation. Oncogene 20, 6188-6195.
Xu, Q., Simpson, S. E., Scialla, T. J., Bagg, A., and Carroll, M. (2003). Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 102, 972-980.
Yang, E., Zha, J., Jockel, J., Boise, L. H., Thompson, C. B., and Korsmeyer, S. J. (1995). Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80, 285-291.
Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T. I., Jones, D. P., and Wang, X. (1997). Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129-1132.
Yoshida, H. (2007). ER stress and diseases. FEBS J 274, 630-658.
Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M., and Horvitz, H. R. (1993). The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75, 641-652.
Yuan, X. M., Li, W., Dalen, H., Lotem, J., Kama, R., Sachs, L., and Brunk, U. T. (2002). Lysosomal destabilization in p53-induced apoptosis. Proc Natl Acad Sci U S A 99, 6286-6291.
Zhang, J., Adrian, F. J., Jahnke, W., Cowan-Jacob, S. W., Li, A. G., Iacob, R. E., Sim, T., Powers, J., Dierks, C., Sun, F., et al. (2010). Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature 463, 501-506.
Zheng, H., Saito, H., Masuda, S., Yang, X., and Takano, Y. (2007). Phosphorylated GSK3beta-ser9 and EGFR are good prognostic factors for lung carcinomas. Anticancer Res 27, 3561-3569.
Zheng, H. C., Xu, X. Y., Xia, P., Yu, M., Takahashi, H., and Takano, Y. (2010). Involvement of inactive GSK3beta overexpression in tumorigenesis and progression of gastric carcinomas. Hum Pathol 41, 1255-1264.
Zhou, H., Summers, S. A., Birnbaum, M. J., and Pittman, R. N. (1998). Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J Biol Chem 273, 16568-16575.
Zinszner, H., Kuroda, M., Wang, X., Batchvarova, N., Lightfoot, R. T., Remotti, H., Stevens, J. L., and Ron, D. (1998). CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12, 982-995.
校內:2014-08-08公開