簡易檢索 / 詳目顯示

研究生: 亞何拉
Arham, Hizballah
論文名稱: 基於偏好的拓樸控制方法調整軟性夾爪之拓樸最佳化設計
Preference-Based Topological Control Methods for Adjusting Topology Optimization Designs of a Soft Gripper
指導教授: 劉至行
Liu, Chih-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 196
外文關鍵詞: topological control method, soft gripper, topology optimization, 3D printing, compliant mechanism
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This study presents preference-based topological control methods for adjusting the topology optimization designs of a soft (or compliant) gripper. Based on the common occurrences in the current topology optimization that yield same results, minimum design exploration and less control toward user preferred design, adjusting methods are aimed to manipulate topology optimization result toward preference topology while still aim to optimize and improve the gripper performance. The optimized soft gripper is prototyped by 3D printing using thermoplastic elastomer (TPE) material. The optimal designs of inverter mechanism and crunching mechanism using the proposed topological control methods presented in this study are used as design examples. The optimal design of a soft gripper with its preference topology is presented and evaluated between the topology similarity with the preference design and improved performance. Experimental results show that the optimized gripper has larger grip dimension (2.55% more) and higher maximum weight load (250% more) compared with the gripper used as preference. Experiment on gripping objects also show the functional capability of the soft gripper.

    ABSTRACT i ACKNOWLEDGEMENTS ii Contents iii List of Figures vii List of Tables xiii Chapter 1 Introduction 1 1-1 Introduction to Soft Gripper 1 1-2 Introduction to ONROBOT SG-b-H 3 1-3 Topology Optimization 4 1-4 Topological Control for Topology Optimization Result 7 1-5 Motivation and Objective 10 1-6 Thesis Structure 11 Chapter 2 Topological Optimization Theory 14 2-1 Topology Optimization Process 14 2-2 Design Domain, Variables and Finite Element Analysis 15 2-3 Filtering and Projection Algorithms 18 2-4 Robust Topology Optimization 21 2-5 MMA Theory 23 2-6 Convergence Criterion 26 2-7 Objective Function 29 2-8 Preference-Based Topological Control Methods 35 2-8-1 Focused Domain Expansion (FDE) 35 2-8-2 Preference Distance Value (PDV) 38 2-9 Topology Optimization Flow 42 2-9-1 Without Topological Control 42 2-9-2 Focused Domain Expansion (FDE) 44 2-9-3 Preference Distance Value (PDV) 47 2-10 Chapter Summary 49 Chapter 3 Design Examples 51 3-1 Preface 51 3-2 Design Process and Objective Function 51 3-3 Example 1: Inverter Mechanism 54 3-3-1 Inverter Example using FDE 56 3-3-2 Inverter Example using PDV 58 3-3-3 Inverter Topology Optimization Results Summary 61 3-4 Example 2: Crunching Mechanism 64 3-4-1 Crunching Example using FDE 66 3-4-2 Crunching Example using PDV 68 3-4-3 Crunching Topology Optimization Results Summary 71 3-5 Topology Change in Topological Control Method Process 74 3-6 Summary of This Chapter 75 Chapter 4 Optimal Design and Analysis of Soft Gripper Topology 77 4-1 Preface 77 4-2 Material Properties 77 4-3 Preference Topology Design of SG-b-H Gripper 78 4-4 Design Domain and Parameter Test 81 4-4-1 Design Domain 82 4-4-2 Parameter Test 86 4-5 Soft Gripper Topology Optimization Design Result 88 4-6 Analysis of Topology Optimization Results 93 4-7 Summary of This Chapter 106 Chapter 5 Trial and Verification of Soft Gripper 107 5-1 Preface 107 5-2 Original SG-b-H Soft Gripper 107 5-2-1 Original Gripper Model 107 5-2-2 Input Displacement and Grip Dimension 108 5-3 3D Printed Preference Gripper 111 5-3-1 Gripper 3D Model and Simulation 111 5-3-2 Manufacturing of 3D Gripper 115 5-3-3 Input Displacement and Grip Dimension 116 5-4 Initial Optimized Soft Gripper 120 5-4-1 Gripper 3D Model and Simulation 120 5-4-2 Manufacturing of 3D Gripper 124 5-4-3 Input Displacement and Grip Dimension 125 5-5 Modified Optimized Soft Gripper 129 5-5-1 Gripper 3D Model and Simulation 129 5-5-2 Manufacturing of 3D Gripper 133 5-5-3 Input Displacement and Grip Dimension 134 5-6 Comparison of Grippers Performance 138 5-6-1 Input Displacement and Grip Dimension Comparison 138 5-6-2 Maximum Load Test Comparison 140 5-6-3 Input Force Test Comparison 144 5-7 Object Gripping Test 146 5-8 Chapter Summary 150 Chapter 6 Conclusions and Suggestions 152 6-1 Conclusions 152 6-2 Suggestions 153 References 155 Appendix A Topology Optimization Results 161 A-1 Topology Optimization without Topological Control 161 A-2 Topology Optimization with FDE 188 A-3 Topology Optimization with PDV 191 Appendix B Engineering Drawing of 3D Printed Preference Gripper 194 Appendix C Engineering Drawing of Initial Optimized Gripper 195 Appendix D Engineering Drawing of Modified Optimized Gripper 196

    [1] J. Fraś, M. Maciaś, F. Czubaczyński, P. Salek, and J. Glówka, “Soft flexible gripper design, characterization and application,” in Advances in Intelligent Systems and Computing, 2017, vol. 543, pp. 368–377. doi: 10.1007/978-3-319-48923-0_40.
    [2] D. Petković and N. D. Pavlović, “Object grasping and lifting by passive compliant gripper,” Mechanismentechnik in Ilmenau, Budapest und Niš, pp. 55–64, 2012.
    [3] UBIROS, “UBIROS Soft Finger Gripper”, Accessed: Dec. 12, 2022. [Online]. Available: https://ubiros.com
    [4] FESTO, “Festo Adaptive Shape Gripper”, Accessed: Dec. 12, 2022. [Online]. Available: https://www.festo.com
    [5] ROBOTDIGG, “ROBOTDIGG Pneumatic Stepper Flexible Gripper”, Accessed: Dec. 12, 2022. [Online]. Available: https://www.robotdigg.com
    [6] PIAB, “Handling sensitive and difficult to pick objects piSOFTGRIP ®.” Accessed: Dec. 12, 2022. [Online]. Available: https://www.piab.com
    [7] Rochu Soft Robotic Gripper, “Rochu Soft Beak Gripper Application.” Accessed: Dec. 12, 2022. [Online]. Available: https://www.softroboticgripper.com
    [8] On Robot, “Soft Gripper”, Accessed: Dec. 08, 2022. [Online]. Available: https://onrobot.com
    [9] On Robot, “Datasheet SG-Tool Technical Sheet.” Accessed: Dec. 08, 2022. [Online]. Available: https://onrobot.com
    [10] M. P. Bendsøe and O. Sigmund, “Material interpolation schemes in topology optimization,” Archive of Applied Mechanics, vol. 69, no. 9–10, pp. 635–654, 1999, doi: 10.1007/s004190050248.
    [11] Y. Chen, “Multi-Material Topology Optimization for Design of a 3D Printed Adaptive Compliant Gripper,” Master Thesis, Mechanical Engineering, National Cheng Kung University, Tainan, 2020.
    [12] O. Sigmund, “On the design of compliant mechanisms using topology optimization,” Mechanics of Structures and Machines, vol. 25, no. 4, pp. 493–524, 1997, doi: 10.1080/08905459708945415.
    [13] T. E. Bruns and D. A. Tortorelli, “Topology optimization of non-linear elastic structures and compliant mechanisms,” Comput Methods Appl Mech Eng, vol. 190, no. 26–27, pp. 3443–3459, Mar. 2001, doi: 10.1016/S0045-7825(00)00278-4.
    [14] J. K. Guest, J. H. Prévost, and T. Belytschko, “Achieving minimum length scale in topology optimization using nodal design variables and projection functions,” Int J Numer Methods Eng, vol. 61, no. 2, pp. 238–254, Sep. 2004, doi: 10.1002/nme.1064.
    [15] O. Sigmund, “Morphology-based black and white filters for topology optimization,” Structural and Multidisciplinary Optimization, vol. 33, no. 4–5, pp. 401–424, Apr. 2007, doi: 10.1007/s00158-006-0087-x.
    [16] S. Xu, Y. Cai, and G. Cheng, “Volume preserving nonlinear density filter based on heaviside functions,” Structural and Multidisciplinary Optimization, vol. 41, no. 4, pp. 495–505, Apr. 2010, doi: 10.1007/s00158-009-0452-7.
    [17] F. Wang, B. S. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Structural and Multidisciplinary Optimization, vol. 43, no. 6, pp. 767–784, 2011, doi: 10.1007/s00158-010-0602-y.
    [18] Q. Wang, H. Han, C. Wang, and Z. Liu, “Topological control for 2D minimum compliance topology optimization using SIMP method,” Structural and Multidisciplinary Optimization, vol. 65, no. 1, Jan. 2022, doi: 10.1007/s00158-021-03124-6.
    [19] H. Kim, O. M. Querin, G. P. Steven, and Y. M. Xie, “A method for varying the number of cavities in an optimized topology using Evolutionary Structural Optimization,” Structural and Multidisciplinary Optimization, vol. 19, no. 2, pp. 140–147, Apr. 2000, doi: 10.1007/s001580050094.
    [20] S. Liu, Q. Li, W. Chen, L. Tong, and G. Cheng, “An identification method for enclosed voids restriction in manufacturability design for additive manufacturing structures,” Frontiers of Mechanical Engineering, vol. 10, no. 2, pp. 126–137, Jun. 2015, doi: 10.1007/s11465-015-0340-3.
    [21] M. Zhou, B. S. Lazarov, F. Wang, and O. Sigmund, “Minimum length scale in topology optimization by geometric constraints,” Comput Methods Appl Mech Eng, vol. 293, pp. 266–282, Aug. 2015, doi: 10.1016/j.cma.2015.05.003.
    [22] B. S. Lazarov, F. Wang, and O. Sigmund, “Length scale and manufacturability in density-based topology optimization,” Archive of Applied Mechanics, vol. 86, no. 1–2, pp. 189–218, Jan. 2016, doi: 10.1007/s00419-015-1106-4.
    [23] B. S. Lazarov and O. Sigmund, “Filters in topology optimization based on Helmholtz-type differential equations,” Int J Numer Methods Eng, vol. 86, no. 6, pp. 765–781, May 2011, doi: 10.1002/nme.3072.
    [24] B. S. Lazarov and F. Wang, “Maximum length scale in density based topology optimization,” Comput Methods Appl Mech Eng, vol. 318, pp. 826–844, May 2017, doi: 10.1016/j.cma.2017.02.018.
    [25] X. Yan, D. Bao, Y. Zhou, Y. Xie, and T. Cui, “Detail control strategies for topology optimization in architectural design and development,” Frontiers of Architectural Research, vol. 11, no. 2, pp. 340–356, Apr. 2022, doi: 10.1016/j.foar.2021.11.001.
    [26] E. Andreassen, A. Clausen, M. Schevenels, B. S. Lazarov, and O. Sigmund, “Efficient topology optimization in MATLAB using 88 lines of code,” Structural and Multidisciplinary Optimization, vol. 43, no. 1, pp. 1–16, Jan. 2011, doi: 10.1007/s00158-010-0594-7.
    [27] O. Sigmund, “Manufacturing tolerant topology optimization,” Acta Mechanica Sinica, vol. 25, pp. 227–239, 2009.
    [28] K. Svanberg, “The method of moving asymptotes-a new method for structural optimization,” Int J Numer Methods Eng, vol. 24, pp. 359–373, 1987.
    [29] J. K. Guest, A. Asadpoure, and S. H. Ha, “Eliminating beta-continuation from Heaviside projection and density filter algorithms,” Structural and Multidisciplinary Optimization, vol. 44, no. 4, pp. 443–453, Oct. 2011, doi: 10.1007/s00158-011-0676-1.
    [30] R. T. Shield and W. Prager, “Optimal structural design for given deflection,” Journal of Applied Mathematics and Physics (Zeitschrift für angewandte Mathematik und Physik), vol. 21, no. 4, pp. 513–523, 1970.
    [31] S. Nishiwaki, M. I. Frecker, S. Min, and N. Kikuchi, “Topology optimization of compliant mechanisms using the homogenization method,” Int J Numer Methods Eng, vol. 42, no. 3, pp. 535–559, Jun. 1998, doi: 10.1002/(SICI)1097-0207(19980615)42:3<535::AID-NME372>3.0.CO;2-J.
    [32] X. Huang and Y. M. Xie, Evolutionary Topology Optimization of Continuum Structures: Methods and Applications. John Wiley and Sons, 2010. doi: 10.1002/9780470689486.
    [33] “bwdist,” Mathworks , Accessed: Dec. 10, 2022. [Online]. Available: https://www.mathworks.com
    [34] “Distance Transform of Binary Image,” Mathworks, Accessed: Dec. 10, 2022. [Online]. Available: https://www.mathworks.com
    [35] C. H. Liu, Y. Chen, and S. Y. Yang, “Quantification of hyperelastic material parameters for a 3D-Printed thermoplastic elastomer with different infill percentages,” Mater Today Commun, vol. 26, Mar. 2021, doi: 10.1016/j.mtcomm.2020.101895.
    [36] On Robot, “On Robot Soft Gripper.” Accessed: Dec. 12, 2022. [Online]. Available: https://onrobot.com
    [37] MatWeb, “PLA Filament MaterialData_281739”, Accessed: Dec. 14, 2022. [Online]. Available: https://www.matweb.com
    [38] Z. Wang, Y. Torigoe, and S. Hirai, “A prestressed soft gripper: design, modeling, fabrication, and tests for food handling,” IEEE Robot Autom Lett, vol. 2, no. 4, pp. 1909–1916, Oct. 2017, doi: 10.1109/LRA.2017.2714141.
    [39] H. Zhang, A. S. Kumar, F. Chen, J. Y. H. Fuh, and M. Y. Wang, “Topology optimized multimaterial soft fingers for applications on grippers, rehabilitation, and artificial hands,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 1, pp. 120–131, 2019, doi: 10.1109/TMECH.2018.2874067.
    [40] Z. Wang, K. Or, and S. Hirai, “A dual-mode soft gripper for food packaging,” Rob Auton Syst, vol. 125, p. 103427, Mar. 2020, doi: 10.1016/j.robot.2020.103427.
    [41] C. H. Liu et al., “Optimal design of a soft robotic gripper for grasping unknown objects,” Soft Robot, vol. 5, no. 4, pp. 452–465, Aug. 2018, doi: 10.1089/soro.2017.0121.
    [42] C. H. Liu, C. H. Chiu, T. L. Chen, T. Y. Pai, M. C. Hsu, and Y. Chen, “Topology optimization and prototype of a three-dimensional printed compliant finger for grasping vulnerable objects with size and shape variations,” J Mech Robot, vol. 10, no. 4, Aug. 2018, doi: 10.1115/1.4039972.
    [43] C. H. Liu, C. H. Chiu, M. C. Hsu, Y. Chen, and Y. P. Chiang, “Topology and size-shape optimization of an adaptive compliant gripper with high mechanical advantage for grasping irregular objects,” Robotica, vol. 37, no. 8, pp. 1383–1400, Aug. 2019, doi: 10.1017/S0263574719000018.

    無法下載圖示 校內:2028-01-31公開
    校外:2028-01-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE