| 研究生: |
亞何拉 Arham, Hizballah |
|---|---|
| 論文名稱: |
基於偏好的拓樸控制方法調整軟性夾爪之拓樸最佳化設計 Preference-Based Topological Control Methods for Adjusting Topology Optimization Designs of a Soft Gripper |
| 指導教授: |
劉至行
Liu, Chih-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 196 |
| 外文關鍵詞: | topological control method, soft gripper, topology optimization, 3D printing, compliant mechanism |
| 相關次數: | 點閱:77 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
This study presents preference-based topological control methods for adjusting the topology optimization designs of a soft (or compliant) gripper. Based on the common occurrences in the current topology optimization that yield same results, minimum design exploration and less control toward user preferred design, adjusting methods are aimed to manipulate topology optimization result toward preference topology while still aim to optimize and improve the gripper performance. The optimized soft gripper is prototyped by 3D printing using thermoplastic elastomer (TPE) material. The optimal designs of inverter mechanism and crunching mechanism using the proposed topological control methods presented in this study are used as design examples. The optimal design of a soft gripper with its preference topology is presented and evaluated between the topology similarity with the preference design and improved performance. Experimental results show that the optimized gripper has larger grip dimension (2.55% more) and higher maximum weight load (250% more) compared with the gripper used as preference. Experiment on gripping objects also show the functional capability of the soft gripper.
[1] J. Fraś, M. Maciaś, F. Czubaczyński, P. Salek, and J. Glówka, “Soft flexible gripper design, characterization and application,” in Advances in Intelligent Systems and Computing, 2017, vol. 543, pp. 368–377. doi: 10.1007/978-3-319-48923-0_40.
[2] D. Petković and N. D. Pavlović, “Object grasping and lifting by passive compliant gripper,” Mechanismentechnik in Ilmenau, Budapest und Niš, pp. 55–64, 2012.
[3] UBIROS, “UBIROS Soft Finger Gripper”, Accessed: Dec. 12, 2022. [Online]. Available: https://ubiros.com
[4] FESTO, “Festo Adaptive Shape Gripper”, Accessed: Dec. 12, 2022. [Online]. Available: https://www.festo.com
[5] ROBOTDIGG, “ROBOTDIGG Pneumatic Stepper Flexible Gripper”, Accessed: Dec. 12, 2022. [Online]. Available: https://www.robotdigg.com
[6] PIAB, “Handling sensitive and difficult to pick objects piSOFTGRIP ®.” Accessed: Dec. 12, 2022. [Online]. Available: https://www.piab.com
[7] Rochu Soft Robotic Gripper, “Rochu Soft Beak Gripper Application.” Accessed: Dec. 12, 2022. [Online]. Available: https://www.softroboticgripper.com
[8] On Robot, “Soft Gripper”, Accessed: Dec. 08, 2022. [Online]. Available: https://onrobot.com
[9] On Robot, “Datasheet SG-Tool Technical Sheet.” Accessed: Dec. 08, 2022. [Online]. Available: https://onrobot.com
[10] M. P. Bendsøe and O. Sigmund, “Material interpolation schemes in topology optimization,” Archive of Applied Mechanics, vol. 69, no. 9–10, pp. 635–654, 1999, doi: 10.1007/s004190050248.
[11] Y. Chen, “Multi-Material Topology Optimization for Design of a 3D Printed Adaptive Compliant Gripper,” Master Thesis, Mechanical Engineering, National Cheng Kung University, Tainan, 2020.
[12] O. Sigmund, “On the design of compliant mechanisms using topology optimization,” Mechanics of Structures and Machines, vol. 25, no. 4, pp. 493–524, 1997, doi: 10.1080/08905459708945415.
[13] T. E. Bruns and D. A. Tortorelli, “Topology optimization of non-linear elastic structures and compliant mechanisms,” Comput Methods Appl Mech Eng, vol. 190, no. 26–27, pp. 3443–3459, Mar. 2001, doi: 10.1016/S0045-7825(00)00278-4.
[14] J. K. Guest, J. H. Prévost, and T. Belytschko, “Achieving minimum length scale in topology optimization using nodal design variables and projection functions,” Int J Numer Methods Eng, vol. 61, no. 2, pp. 238–254, Sep. 2004, doi: 10.1002/nme.1064.
[15] O. Sigmund, “Morphology-based black and white filters for topology optimization,” Structural and Multidisciplinary Optimization, vol. 33, no. 4–5, pp. 401–424, Apr. 2007, doi: 10.1007/s00158-006-0087-x.
[16] S. Xu, Y. Cai, and G. Cheng, “Volume preserving nonlinear density filter based on heaviside functions,” Structural and Multidisciplinary Optimization, vol. 41, no. 4, pp. 495–505, Apr. 2010, doi: 10.1007/s00158-009-0452-7.
[17] F. Wang, B. S. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Structural and Multidisciplinary Optimization, vol. 43, no. 6, pp. 767–784, 2011, doi: 10.1007/s00158-010-0602-y.
[18] Q. Wang, H. Han, C. Wang, and Z. Liu, “Topological control for 2D minimum compliance topology optimization using SIMP method,” Structural and Multidisciplinary Optimization, vol. 65, no. 1, Jan. 2022, doi: 10.1007/s00158-021-03124-6.
[19] H. Kim, O. M. Querin, G. P. Steven, and Y. M. Xie, “A method for varying the number of cavities in an optimized topology using Evolutionary Structural Optimization,” Structural and Multidisciplinary Optimization, vol. 19, no. 2, pp. 140–147, Apr. 2000, doi: 10.1007/s001580050094.
[20] S. Liu, Q. Li, W. Chen, L. Tong, and G. Cheng, “An identification method for enclosed voids restriction in manufacturability design for additive manufacturing structures,” Frontiers of Mechanical Engineering, vol. 10, no. 2, pp. 126–137, Jun. 2015, doi: 10.1007/s11465-015-0340-3.
[21] M. Zhou, B. S. Lazarov, F. Wang, and O. Sigmund, “Minimum length scale in topology optimization by geometric constraints,” Comput Methods Appl Mech Eng, vol. 293, pp. 266–282, Aug. 2015, doi: 10.1016/j.cma.2015.05.003.
[22] B. S. Lazarov, F. Wang, and O. Sigmund, “Length scale and manufacturability in density-based topology optimization,” Archive of Applied Mechanics, vol. 86, no. 1–2, pp. 189–218, Jan. 2016, doi: 10.1007/s00419-015-1106-4.
[23] B. S. Lazarov and O. Sigmund, “Filters in topology optimization based on Helmholtz-type differential equations,” Int J Numer Methods Eng, vol. 86, no. 6, pp. 765–781, May 2011, doi: 10.1002/nme.3072.
[24] B. S. Lazarov and F. Wang, “Maximum length scale in density based topology optimization,” Comput Methods Appl Mech Eng, vol. 318, pp. 826–844, May 2017, doi: 10.1016/j.cma.2017.02.018.
[25] X. Yan, D. Bao, Y. Zhou, Y. Xie, and T. Cui, “Detail control strategies for topology optimization in architectural design and development,” Frontiers of Architectural Research, vol. 11, no. 2, pp. 340–356, Apr. 2022, doi: 10.1016/j.foar.2021.11.001.
[26] E. Andreassen, A. Clausen, M. Schevenels, B. S. Lazarov, and O. Sigmund, “Efficient topology optimization in MATLAB using 88 lines of code,” Structural and Multidisciplinary Optimization, vol. 43, no. 1, pp. 1–16, Jan. 2011, doi: 10.1007/s00158-010-0594-7.
[27] O. Sigmund, “Manufacturing tolerant topology optimization,” Acta Mechanica Sinica, vol. 25, pp. 227–239, 2009.
[28] K. Svanberg, “The method of moving asymptotes-a new method for structural optimization,” Int J Numer Methods Eng, vol. 24, pp. 359–373, 1987.
[29] J. K. Guest, A. Asadpoure, and S. H. Ha, “Eliminating beta-continuation from Heaviside projection and density filter algorithms,” Structural and Multidisciplinary Optimization, vol. 44, no. 4, pp. 443–453, Oct. 2011, doi: 10.1007/s00158-011-0676-1.
[30] R. T. Shield and W. Prager, “Optimal structural design for given deflection,” Journal of Applied Mathematics and Physics (Zeitschrift für angewandte Mathematik und Physik), vol. 21, no. 4, pp. 513–523, 1970.
[31] S. Nishiwaki, M. I. Frecker, S. Min, and N. Kikuchi, “Topology optimization of compliant mechanisms using the homogenization method,” Int J Numer Methods Eng, vol. 42, no. 3, pp. 535–559, Jun. 1998, doi: 10.1002/(SICI)1097-0207(19980615)42:3<535::AID-NME372>3.0.CO;2-J.
[32] X. Huang and Y. M. Xie, Evolutionary Topology Optimization of Continuum Structures: Methods and Applications. John Wiley and Sons, 2010. doi: 10.1002/9780470689486.
[33] “bwdist,” Mathworks , Accessed: Dec. 10, 2022. [Online]. Available: https://www.mathworks.com
[34] “Distance Transform of Binary Image,” Mathworks, Accessed: Dec. 10, 2022. [Online]. Available: https://www.mathworks.com
[35] C. H. Liu, Y. Chen, and S. Y. Yang, “Quantification of hyperelastic material parameters for a 3D-Printed thermoplastic elastomer with different infill percentages,” Mater Today Commun, vol. 26, Mar. 2021, doi: 10.1016/j.mtcomm.2020.101895.
[36] On Robot, “On Robot Soft Gripper.” Accessed: Dec. 12, 2022. [Online]. Available: https://onrobot.com
[37] MatWeb, “PLA Filament MaterialData_281739”, Accessed: Dec. 14, 2022. [Online]. Available: https://www.matweb.com
[38] Z. Wang, Y. Torigoe, and S. Hirai, “A prestressed soft gripper: design, modeling, fabrication, and tests for food handling,” IEEE Robot Autom Lett, vol. 2, no. 4, pp. 1909–1916, Oct. 2017, doi: 10.1109/LRA.2017.2714141.
[39] H. Zhang, A. S. Kumar, F. Chen, J. Y. H. Fuh, and M. Y. Wang, “Topology optimized multimaterial soft fingers for applications on grippers, rehabilitation, and artificial hands,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 1, pp. 120–131, 2019, doi: 10.1109/TMECH.2018.2874067.
[40] Z. Wang, K. Or, and S. Hirai, “A dual-mode soft gripper for food packaging,” Rob Auton Syst, vol. 125, p. 103427, Mar. 2020, doi: 10.1016/j.robot.2020.103427.
[41] C. H. Liu et al., “Optimal design of a soft robotic gripper for grasping unknown objects,” Soft Robot, vol. 5, no. 4, pp. 452–465, Aug. 2018, doi: 10.1089/soro.2017.0121.
[42] C. H. Liu, C. H. Chiu, T. L. Chen, T. Y. Pai, M. C. Hsu, and Y. Chen, “Topology optimization and prototype of a three-dimensional printed compliant finger for grasping vulnerable objects with size and shape variations,” J Mech Robot, vol. 10, no. 4, Aug. 2018, doi: 10.1115/1.4039972.
[43] C. H. Liu, C. H. Chiu, M. C. Hsu, Y. Chen, and Y. P. Chiang, “Topology and size-shape optimization of an adaptive compliant gripper with high mechanical advantage for grasping irregular objects,” Robotica, vol. 37, no. 8, pp. 1383–1400, Aug. 2019, doi: 10.1017/S0263574719000018.
校內:2028-01-31公開