| 研究生: |
蘇聖煒 Su, Sheng-Wei |
|---|---|
| 論文名稱: |
系統模擬結合樣本平均近似法求解手術排程問題 Combining System Simulation and Sample Average Approximation to Solve Surgical Scheduling Problem |
| 指導教授: |
蔡青志
Tsai, Shing-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 手術排程 、模擬最佳化 、樣本平均近似法 、快速篩選法 |
| 外文關鍵詞: | surgical scheduling, optimization via simulation, sample average approximation, rapid screening |
| 相關次數: | 點閱:135 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對手術排程問題進行求解,當手術室數量相對於手術而言供不應求時,如何妥善安排手術執行的時間即成了一個重要的課題,安排手術時必須考慮各種資源的限制,不同狀況的發生也需要納入考量,而非僅專注於單一項績效,在本研究中考量了手術執行的時間、急診的需求、病患病情的緊急程度、手術室逾時狀況等因子建構模型,進行多台手術排入單間手術室的多天排程,決定每一台手術預定執行的日子。
而由於手術時間和急診的發生皆為隨機變數,造成此問題具有隨機目標式與多條隨機限制式,並不適用僅能求解確定性問題的數學規劃,而龐大的解空間也無法利用窮舉法來得到品質較佳的解甚至可行解;
因此本研究利用樣本平均近似法(Sample Average Approximation; SAA)的演算法進行求解,將問題的隨機性呈現於模型中;此外也會利用快速篩選法(Rapid Screening)做為另一種求解方法,加速候選解的搜尋,且在一定程度的統計保證下增加求解的效率;並將此兩種方法與其他啟發式解法進行比較,分析不同情境下的問題各種方法的優劣與適用性。
當手術耗時變異程度大時,結合SAA的快速篩選法會得到較佳的目標值,但其抽樣成本較其他方法多出許多;而SAA演算法則可以以明顯較低的抽樣成本來求得品質也不錯的解;而手術耗時變異小時,這兩種方法亦可以求得品質很好的解。
相較於此,啟發式排程方法僅能在手術耗時變異小的情況下求得較佳的解,當手術耗時變異大時,其求得的解品質皆與其他方式有落差。而在求解速度上,SAA演算法相較於快速篩選法則較為耗時。
Duration of surgeries and occurrence of emergency are important random factors in surgical scheduling problem. These factors cannot be known as deterministic values, so the surgical scheduling problem cannot be solved by mathematical programming methods. In our research, we use sample average approximation (SAA) algorithm and rapid screening (RS) to cope with these stochastic factors. In this way, surgical scheduling problem can be solved while its randomness is taken into account. Moreover, we solve surgical scheduling problem via several heuristic methods as well, and compare the results with the ones via SAA and RS.
[1] 童麗清,運用系統模擬技術縮短手術房病患等候時間之研究-以中部某區域教學醫院手術室為例。東海大學工業工程與經營資訊學系碩士論文(2013)。
[2] 運用系統模擬技術縮短手術房病患等候時間之研究-以中部某區域教學醫院手術室為例。東海大學工業工程與經營資訊學系碩士論文(2013)。
[3] 蔡典霖,應用系統模擬於手術排程之研究。長庚大學資訊管理學系碩士論文(2011)。
[4] B. Addis, G. Carello, A. Grosso, E. T´enfani, Operating room scheduling and
rescheduling : a rolling horizon approach. Flexible Services and Manufacturing
Journal 28 (2016) 206–232.
[5] B. Addis, G. Carello, E. T´enfani, A robust optimization approach for the operating
room planning problem with uncertain surgery duration, in: Proceedings of the International
Conference on Health Care Systems Engineering, pp.175–189, Springer,
New York, 2014.
[6] T. Al-Khamis, R. M’Hallah, A two-stage stochastic programming model for the parallel
machine scheduling problem with machine capacity. Computers and Operations
Research 38 (2010) 1747–1759.
[7] J. Atlason, M.A. Epelman, S.G. Henderson, Call center staffing with simulation and
cutting plane methods. Annals of Operations Research 127 (2004) 333–358.
[8] V. Augusto, X. Xie, V. Perdomo, Operating theatre scheduling with patient recovery
in both operating rooms and recovery beds. Computers and Industrial Engineering
58 (2010) 231–238.
[9] G. Bayraksan, D.P. Morton, Assessing solution quality in stochastic programs via
sampling. Operations Research 5 (2009) 102–122.
[10] B. Cardoen, E. Demeulemeester, J. Beli¨en, Operating room planning and scheduling
: A literature review. European Journal of Operational Research 201 (2010) 921–
932.
[11] V.S. Chow, M.L. Puterman, N. Salehirad, W. Huang, D. Atkins, Reducing surgical
ward congestion through improved surgical scheduling and uncapacitated simulation.
Production and Operations Management 20 (2011) 418–430.
[12] B. Denton, A.J. Miller, H.J. Balasubramanian, T.R. Huschka, Optimal allocation of
surgery blocks to operating rooms under uncertainty. Operations Research 58 (2010)
802–816.
[13] B.T. Denton, A.S. Rahman, H. Nelson, A.C. Bailey, Simulation of a multiple operating
room surgical suite, Proceeding of the 2006 Winter Simulation Conference,
2006, pp.414–424.
[14] B. Denton, J. Viapiano, A. Vogl, Optimization of surgery sequencing and scheduling
decisions under uncertainty. Health Care Management Science 10 (2007) 13–24.
[15] E. Erdem, X. Qu, J. Shi, Rescheduling of elective patients upon the arrival of emergency
patients. Decision Support Systems 54 (2012) 551–563.
[16] Y.B. Ferrand, M.J. Magazine, U.S. Rao, Managing operating room efficiency and
responsiveness for emergency and elective surgeries - A literature survey. IIE Transaction
on Healthcare Systems Engineering 4 (2014) 49–64.
[17] F. Guerriero, R. Guido, Operational research in the management of the operating
theatre : a survey. Health Care Management Science 14 (2011) 89–114.
[18] E. Hans, G. Wullink, M.V. Houdenhoven, G. Kazemier, Robust surgery loading.
European Journal of Operational Research 185 (2008) 1038–1050.
[19] T. Homem-de-Mello, G. Bayraksan, Monte Carlo sampling-based methods for stochastic
optimization. Surveys in Operations Research and Management Science 19
(2014) 56–85.
[20] L.J. Hong, J. Luo, B.L. Nelson, Chance constrained selection of the best. INFORMS
Journal on Computing 27 (2015) 317–334.
[21] K.J. Klassen, R. Yoogalingam, Strategies for appointment policy design with patient
unpunctuality. Decision Sciences 45 (2014) 881–911.
[22] A.J. Kleywegt, A. Shpiro, T. Homem-De-Mello, The sample average approximation
method for stochastic discrete optimization. SIAM Journal on Optimization 12
(2001) 479–502.
[23] M. Lamiri, F. Grimaud, X. Xie, X., Optimization methods for a stochastic surgery
planning problem. International Journal of Production Economics 120 (2009) 400–
410.
[24] M. Lamiri, X. Xie, A. Dolgui, F. Grimaud, A stochastic model for operating room
planning with elective and emergency demand for surgery. European Journal of Operational
Research 185 (2008) 1026–1037.
[25] L.H. Lee, N.A. Pujowidianto, L.W. Li, C.H. Chen, C.M. Yap, Approximate Simulation
Budget Allocation for Selecting the Best Design in the Presence of Stochastic
Constraints. IEEE Transaction on Automatic Control 57 (2012) 5940–5945.
[26] J.H. May,W.E. Spangler, D.P. Strum, L.G. Vargas, The surgical scheduling problem
: current research and future opportunities. Production and Operations Management
20 (2011) 392–405.
[27] J.H. May, D.P. Strum, L.G. Vargas, Fitting the lognormal distribution to surgical
procedure times. Decision Sciences 31 (2000) 129–148.
[28] D. Min, Y. Yih, Scheduling elective surgery under uncertainty and downstream capacity
constraints. European Journal of Operational Research 206 (2010) 642–654.
[29] S.N. Ogulate, R. Erol, A hierarchical multiple criteria mathematical programming
approach for scheduling general surgery operations in large hospitals. Journal of
Medical Systems 27 (2003) 259–270.
[30] D. O¨ zdemir, E. Yu¨cesan, Y.T. Herer, Multi-location transshipment problem with
capacitated production. European Journal of Operational Research 226 (2013) 425–
435.
[31] M.J. Persson, J.A. Persson, Analysing management policies for operating room
planning using simulation. Health Care Management Science 13 (2010) 182–191.
[32] D.N. Pham, A. Klinkert, Surgical case scheduling as a generalized job shop scheduling
problem. European Journal of Operational Research 185 (2008) 1011–1025.
[33] A. Shapiro, Asymptotic analysis of stochastic programs. Annals of Operations Research
30 (1991) 169–186.
[34] J. Tang, Y. Wang, An adjustable robust optimisation method for elective and emergency
surgery capacity allocation with demand uncertainty. International Journal of
Production Research 53 (2015) 7317–7328.
校內:2021-07-21公開