簡易檢索 / 詳目顯示

研究生: 李榮峰
Lee, Jung-Feng
論文名稱: 聚芴系與聚咔唑共聚高分子之合成及其在高分子發光二極體與高分子太陽能電池之應用
Synthesis and characterization of polyfluorene and polycarbazole copolymers for polymer- light-emitting-diodes and polymer solar cells applications
指導教授: 許聯崇
Hsu, Lien-Chung Steve
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 280
中文關鍵詞: 聚芴系共聚高分子聚咔唑共聚高分子有機太陽能電池
外文關鍵詞: polyfluorene copolymer, polycarbazole copolymer, organic solar cells
相關次數: 點閱:95下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究的第一部分是將N-aryl-1,8-naphthalimide與1,8-naphthoilenearylimidazole衍生物以化學鍵結在polyfluorene (PF)的尾端,本研究可得到一系列綠光高分子材料。高分子P1~P5的EL光色分別為藍綠光、綠藍光、純綠光與黃綠光(λmax = 465 nm、490 nm、500 nm與545 nm)。本研究導入少量的染料單體M1~M5 (5 mole%)到PF分子的尾端,可以利用電荷捕捉(charge trapping)與Förster能量轉移,成功將藍光(PF)轉移到綠光區(M1~M5)。P4的發光為純綠光,CIE座標為 (0.20, 0.41),在12 V時有最大亮度為11500 cd/m2。P5的發光為黃綠光,CIE座標為(0.36, 0.56),在17 V時有最大亮度為6534 cd/m2。
    本論文研究的第二部分為合成一系列的黃綠光發光高分子材料,其中P5-0.06的EL發光同時具有藍光(λmax=430/460 nm)與黃綠光(λmax =510/530 nm),分別來自於fluorene與M5的貢獻,CIE座標為(0.25, 0.34),在10 V時有最大亮度為6704 cd/m2。將P5-0.06與適當比例的紅色磷光銥錯合物(BtpIr)混摻可以得到發純白光的高分子發光二極體,CIE座標為(0.32, 0.34),在9 V時亮度為4030 cd/m2。
    本論文研究的第三部分是由Suzuki聚合法得到一個新型低能隙聚芴系共聚高分子(PFNAP),PFNAP的光學能隙與電化學能隙分別為1.82 eV 與1.89 eV。將PFNAP與PCBM混合併製作成異質接面高分子太陽能電池,它的能量轉換效率(PCE)已被量測,PFNAP/PCBM (1:3)與 PFNAP/PCBM (1:4)分別為0.61% 與0.67%。
    本論文研究的第四部分是由Suzuki、Yamamoto與Stille聚合法得到一系列的新型低能隙聚芴系共聚高分子,高分子的光學能隙範圍在1.79 eV與1.24 eV之間。將一系列高分子分別與PCBM混合併製作成異質接面高分子太陽能電池,它們的能量轉換效率(PCE)已被量測。PC-CARB/ P71CBM (1:4)元件有最佳的光伏特性,PCE為1.27 %,開路電壓(Voc)為0.65 V,短路電流(Jsc)為6.69 mA/cm2.
    本論文研究的第五部分是由Suzuki與Stille聚合法得到三種的新型低能隙聚芴系共聚高分子,它們的能隙與分子能階(HOMO與LUMO)可以藉由不同聚合方式來調整。在聚合反應時,使用具有長側碳鏈的單體,可以得到高分子量的高分子。將一系列高分子分別與PCBM混合,並製作成異質接面高分子太陽能電池,它們的能量轉換效率(PCE)已被量測。另一方面,本研究發現PF12-TBT的光伏元件對於退火溫度相當敏感,所以本研究利用各種分析方法來研究退火時的物理現象。PF12-TBT/PCBM (1:4)在70 oC退火20分鐘有最佳的光伏特性,PCE為4.13 %,開路電壓(Voc)為1.02 V,填充因子(FF)為55.9%,短路電流(Jsc)為7.24 mA/cm2。
    本論文研究的第六部分是由2,6-bis-(5-bromo-3-hexyl- thiophen-2-yl)-anthraquinone經由Stille聚合法,可得到新型低能隙聚芴系共聚高分子(PFTTDIONE),它的光學能隙為1.90 eV。將PFTTDIONE與PCBM混合併製作成異質接面高分子太陽能電池,它的能量轉換效率(PCE)已被量測,PFTTDIONE/PCBM (1:2)光伏元件的PCE為1.58 % ,開路電壓(Voc)為0.74 V,短路電流(Jsc)為5.99 mA/cm2。

    First, a novel series of green light emitting single polymers were prepared by end-capping of N-aryl-1,8-naphthalimide and 1,8-naphthoilenearylimidazole derivatives into polyfluorene. The electroluminescence (EL) spectra of polymers (P1~P5) exhibit greenish-blue, bluish-green, pure green, and yellowish-green emission (λmax = 465 nm, 490 nm, 500 nm, and 545 nm, respectively) from compounds (M1~M5). It was found that by the introduction of a small amount of compounds (M1~M5) (5 mole%) into polyfluorene, the emission color can be tuned from the blue to green region. The color tuning was found to have gone through charge trapping and Förster energy transfer. The device of P4 emits pure green light with Commission Internationale de l'Eclairage (CIE) coordinates of (0.20, 0.41), and exhibits a maximum brightness of 11500 cd/m2 at 12V with a structure of indium tin oxide (ITO)/PEDOT:PSS/PVK/emission layer/Ca/Ag. The device of P5 emits yellowish green light with CIE coordinates of (0.36, 0.56), and exhibits a maximum brightness of 6534 cd/m2 at 17V.
    Second, a novel series of blue and yellowish-green light emitting single polymers were prepared by end-capping of low contents of 4-bromo-7H-benzo[de]naphtha[2',3':4,5]imidazo[2,1-a]iso-quinolin-7-one (M5) into polyfluorene. Electroluminescence (EL) spectra of these polymers exhibit blue emission (λmax = 430 /460 nm) from the fluorene segments and yellowish-green emission (λmax = 510 /530 nm) from the M5 units. For the polymer (P5-0.06) with the M1 unit content of 0.06 mole%, its EL spectrum shows balanced intensities of blue emission and yellowish-green emission with CIE coordinates of (0.25, 0.34). The maximum brightness of the device prepared from the polymer (P5-0.06) is 6704 cd/m2 at 10V. A new white polymer-light-emitting-diode (WPLED) can be developed from the single polymer (P5-0.06) system blended with a red phosphorescent iridium complex [Bis(2-[2'- benzothienyl)-pyridinato-N,C3'] iridium (acetylacetonate) (BtpIr)]. We were able to obtain a white-light-emission device by adjusting the molar ratio of BtpIr to P5-0.06. The brightness in such a device configuration is 4030 cd/m2 at 9V with CIE coordinates of (0.32, 0.34).
    Third, we have synthesized a new low bandgap alternating polyfluorene copolymer (PFNAP) based on dioctylfluorene and a donor-acceptor monomer with an electron-withdrawing moiety as a side chain, via a Suzuki polymerization reaction. The optical bandgap and the electrochemical bandgap of PFNAP are 1.82 eV and 1.89 eV, respectively. The bulk heterojuction polymer solar cells were fabricated with the conjugated polymer as the electron donor and 6.6-phenyl C61-butyric acid methyl ester (PCBM) as the electron acceptor. The power conversion efficiencies (PCE) of the solar cells based on PFNAP: PCBM (1:3) and PFNAP: PCBM (1:4) are 0.61% and 0.67%, respectively, under the illumination of AM 1.5 G, 100 mW/cm2.
    Fourth, a new series of low bandgap carbazole copolymers containing an electron-withdrawing moiety as a side chain, via Suzuki, Yamamoto, and Stille polymerization reactions has been synthesised. Their bandgaps and molecular energy levels can be tuned by copolymerizing with different conjugated electron-donating units. The optical bandgaps of the copolymers range from 1.79 eV to 1.24 eV. In order to investigate their photovoltaic properties, polymer solar cell devices based on low bandgap copolymers were fabricated with a structure of ITO/PEDOT: PSS/copolymers:PCBM/Al, under the illumination of AM 1.5G, 100 mW/cm2. The power conversion efficiencies (PCE) of the polymer solar cells based on these low bandgap copolymers were measured. The best performance was obtained by using PC-CARB as the electron donor and 6,6-phenyl C71-butyric acid methyl ester (PC71BM) as the electron acceptor. The PCE of the solar cell based on PC-CARB/ P71CBM (1:4) was 1.27 % with an open-circuit voltage (Voc) of 0.65 V, and a short-circuit current (Jsc) of 6.69 mA/cm2.
    Fifth, three low bandgap polyfluorene copolymers containing a donor-acceptor-donor moiety have been synthesized via Suzuki and Stille polymerization reactions. Their bandgaps and molecular energy levels (HOMO and LUMO) varied with different polymerization methods. The molecular weight of the copolymer increased significantly through copolymerizing with a monomer having a long alkyl side chain. In order to investigate their photovoltaic properties, polymer solar cell (PSC) devices based on the copolymers were fabricated under the illumination of AM 1.5G, 100 mW/cm2. We found that the annealing temperature had a profound effect on the power conversion efficiency (PCE) of the devices with a blend of poly[9,9-didodecylfluorene-alt-(bis-thienylene) benzothiadiazole] (PF12-TBT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The PCE of the solar cell based on PF12-TBT/PCBM (1:4) annealing at 70 oC for 20 min was 4.13 % with an open-circuit voltage (Voc) of 1.02 V, fill Factor of 55.9%, and a short-circuit current (Jsc) of 7.24 mA/cm2.
    Sixth, we have synthesized a new narrow bandgap alternating polyfluorene copolymer (PFTTDIONE) based on 2,7-dibromo- 9,9-dioctylfluorene, 2,5-bis-(tributylstannyl)-thiophene, and 2,6-bis- (5-bromo-3-hexyl-thiophen-2-yl)-anthraquinone, via a Stille polymer- ization reaction. The optical bandgap of PFTTDIONE is equal to the electrochemical bandgap (1.90 eV). In order to investigate its photovoltaic properties, polymer solar cells (PSCs) devices based on PFTTDIONE were fabricated with a structure of ITO/PEDOT:PSS/ copolymer:PCBM/ LiF/Al under the illumination of AM 1.5G, 100 mW/cm2. The bulk heterojuction (BHJ) polymer solar cells were fabricated with the conjugated polymer as the electron donor and 6,6-phenyl C61-butyric acid methyl ester (PCBM) as the electron acceptor. The power conversion efficiency (PCE) of the solar cells based on PFTTDIONE/PCBM (1:2) annealing at 110 oC for 20 min was 1.58 % with an open-circuit voltage (Voc) of 0.74 V, Fill Factor of 35.7 %, and a short-circuit current (Jsc) of 5.99 mA/cm2.

    總目錄 摘要............................................................................................................I Abstract....................................................................................................IV 誌謝..........................................................................................................IX 總目錄......................................................................................................X 表目錄...................................................................................................XX 圖目錄................................................................................................XXII Scheme目錄.......................................................................................XXXI 第一章 緒論..............................................................................................1 1-1 前言.................................................................................................1 1-2有機發光二極體技術展..................................................................2 1-3有機太陽能電池技術發展..............................................................3 1-4 研究動機與目的.............................................................................6 第二章文獻回顧與原理............................................................................9 2-1共軛導電高分子的特性..................................................................9 2-2光物理原理....................................................................................13 2-2-1光物理行為.................................................................................13 2-2-2能量轉移.....................................................................................16 2-2-3分子間激發態(interchain exciton)..............................................18 2-3光激光與電激光原理....................................................................19 2-4有機發光元件之結構....................................................................22 2-4-1電洞注入材料.............................................................................24 2-4-2電洞傳輸材料.............................................................................25 2-4-3電子傳輸材料.............................................................................25 2-5、材料發光波長之調整…………………………...………………27 2-6聚芴(polyfluorenes)的簡介............................................................30 2-7聚合方法簡介................................................................................31 2-8有機太陽能電池之工作原理........................................................34 2-9有機太陽能電池之特性分析........................................................36 2-9-1開路電壓 (open circuit voltage).................................................37 2-9-2短路電流 (short circuit current).................................................38 2-9-3填充因子 (fill factor).................................................................38 2-9-4光電轉換效率 (power conversion efficiency)...........................40 2-9-5、外部量子效率(external quantum efficiency)..........................41 2-10太陽光的頻譜照度......................................................................43 2-11有機光伏元件結構......................................................................47 2-11-1單層結構 (single layer device)................................................47 2-11-2雙層異質接面結構 (bilayer heterojunction device)................48 2-11-3單層異質接面結構 (bulk heterojunction device)....................49 2-12、能帶理論……………………………………………………....54 2-13低能隙共聚高分子......................................................................59 第三章實驗步驟及分析裝置..................................................................62 3-1實驗藥品及儀器............................................................................62 3-1-1藥品.............................................................................................62 3-1-2儀器............................................................................................65 3-2 N-aryl-1,8-naphthalimide與1,8-naphthoilene-arylimidazole染料 衍生物用於聚芴系綠光高分子發光二極體之應用..........................67 3-2-1、單體合成步驟..........................................................................67 3-2-2、高分子合成步驟......................................................................71 3-3聚芴系綠光高分子混摻紅色磷光銥錯合物(red phosphorescent Iridium complex)用於白光高分子發光二極體之應用......................75 3-3-1、高分子合成步驟......................................................................75 3-4新型分子內予體-受體(D-A)聚芴系共聚高分子應用於有機太陽 能電池之研究......................................................................................78 3-4-1、單體合成步驟..........................................................................78 3-4-2、高分子合成步驟......................................................................81 3-5新型低能隙咔唑(carbazole)共聚高分子應用於有機太陽能電池 之研究..................................................................................................83 3-5-1、單體合成步驟..........................................................................83 3-5-2、高分子合成步驟......................................................................88 3-6退火效應(annealing effect)對聚芴系共聚高分子衍生物用於高分 子太陽能電池之研究..........................................................................94 3-6-1、單體合成步驟..........................................................................94 3-6-2、高分子合成步驟......................................................................95 3-7包含2,6-bis-(3-hexyl-thiophen-2-yl)-anthraquinone單位的新型低 能隙聚芴共聚高分子衍生物應用於有機太陽能電池之研究..........99 3-7-1 單體合成步驟...........................................................................99 3-7-2 高分子合成步驟.....................................................................101 3-8結構鑑定與分析原理..................................................................102 3-9高分子發光二極體(polymer-light-emitting-diode)與高分子太陽 能電池(polymer solar cell)之元件製備.............................................114 第四章結果與討論…...........................................................................123 4-1 N-aryl-1,8-naphthalimide與1,8-naphthoilene-arylimidazole染料 衍生物用於聚芴系綠光高分子發光二極體之應用.......................123 4-1-1單體合成與結構之鑑定..........................................................125 4-1-2高分子合成與結構鑑定........................................129 4-1-3高分子分子量的測定...................................................134 4-1-4熱性質分析..........................................................134 4-1-5光學性質分析...........................................................137 4-1-6電化學性質分析...........................................................144 4-1-7元件電激發光性質.......................................................147 4-2聚芴系綠光高分子混摻紅色磷光銥錯合物(red phosphorescent Iridium complex)用於白光高分子發光二極體之應用....................151 4-2-1單體合成與結構之鑑定...........................................................151 4-2-2高分子合成與結構鑑定...........................................................151 4-2-3高分子分子量的測定...............................................................157 4-2-4熱性質分析...............................................................................158 4-2-5光學性質分析...........................................................................160 4-2-6電化學性質分析.......................................................................163 4-2-7元件電激發光性質..................................................................165 4-3新型分子內予體-受體(D-A)聚芴系共聚高分子應用於有機太陽 能電池之研究...................................................................................174 4-3-1單體合成與結構之鑑定.........................................................174 4-3-2高分子合成與結構鑑定.........................................................179 4-3-3高分子分子量的測定.............................................................180 4-3-4熱性質分析.............................................................................181 4-3-5光學性質分析.........................................................................182 4-3-6電化學性質分析.....................................................................185 4-3-7高分子太陽能電池元件性質析.............................................187 4-4新型低能隙咔唑(carbazole)共聚高分子應用於有機太陽能電池 之研究...............................................................................................191 4-4-1單體合成與結構之鑑定.........................................................191 4-4-2高分子合成與結構鑑定.........................................................196 4-4-3高分子分子量的測定..............................................................202 4-4-4熱性質分析..............................................................................203 4-4-5光學性質分析..........................................................................205 4-4-6電化學性質分析......................................................................207 4-4-7高分子太陽能電池元件性質析..............................................209 4-4-8穿透式電子顯微鏡(TEM) 對主動層薄膜的型態(morphology) 分析...................................................................................................215 4-5退火效應(annealing effect)對聚芴系共聚高分子衍生物用於高分 子太陽能電池之研究........................................................................219 4-5-1單體合成與結構之鑑定..........................................................220 4-5-2高分子合成與結構鑑定..........................................................222 4-5-3高分子分子量的測定..............................................................225 4-5-4熱性質分析..............................................................................225 4-5-5光學性質分析..........................................................................227 4-5-6電化學性質分析.......................................................................232 4-5-7高分子太陽能電池元件性質析...............................................234 4-5-8 PF12-TBT/PCBM (1:4)在不同退火溫度下的原子力顯微鏡 (AFM)分析.........................................................................................239 4-5-9 PF12-TBT/PCBM (1:4)在不同退火溫度下的光學顯微鏡(OM) 分析...................................................................................................242 4-5-10 PF12-TBT/PCBM (1:4)在不同退火溫度下的時間解析光激發 光光譜(TR-PL)分析.........................................................................244 4-5-11 PF12-TBT/PCBM (1:4)在不同退火溫度下的XRD分析..246 4-6包含2,6-bis-(3-hexyl-thiophen-2-yl)-anthraquinone單位的新型低 能隙聚芴共聚高分子衍生物應用於有機太陽能電池之研究......248 4-6-1單體合成與結構之鑑定........................................................248 4-6-2高分子合成與結構鑑定........................................................251 4-6-3高分子分子量的測定............................................................252 4-6-4熱性質分析............................................................................253 4-6-5光學性質分析...........................................................................255 4-6-6電化學性質分析.......................................................................257 4-6-7高分子太陽能電池元件性質析...............................................259 4-6-8 PFTTDIONE/PCBM (1:1~1:4)的原子力顯微鏡(AFM)分析.262 第五章 結論..........................................................................................263 參考文獻................................................................................................267 自述........................................................................................................274 著作列表................................................................................................275

    參考文獻
    [1] H. Shirakawa, C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, E. J. Louis, S.C. Gau, A.G. MacDiarmid, Phy. Rev. Lett., 1977, 39, 1098.
    [2] J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, A.B. Holmes, Nature, 1990, 347, 539.
    [3] S. Gunes, H. Neugebauer, N.S. Sariciftci, Chem. Rev., 2007, 107, 1324.
    [4] S.E. Shaheen, D.S. Ginley, G.E. Jabbour, MRS Bull., 2005, 30, 10.
    [5] S.E. Shaheen, R. Radspinner, N. Peyghambarian, G.E. Jabbour, Appl. Phys. Lett., 2001, 79, 2996.
    [6] J. Bharathan, Y. Yang, Appl. Phys. Lett., 1998, 72, 2660.
    [7] C.J. Brabec, F. Padinger, J.C. Hummelen, R.A. Janssen, N.S. Sariciftci, Synth. Met., 1999, 102, 861.
    [8] G.Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nature Mater., 2005, 4, 864.
    [9] S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coate, J.S. Moon, D. Moses, M. Lee, A.J. Heeger, Nature Photo., 2009, 3, 297.
    [10] A. Monkman, Phys. Rev .Lett., 2001, 6, 1358.
    [11] A.J. Heeger, Comments Solid State Physics., 1981, 10, 53.
    [12] N.C. Greenham, R.H. Friend, Solid State Physics., 1995, 49, 13.
    [13] D.A. Skoog, D.M. West, F.J. Holler, Fundamentals of Analytical Chemistry, 5th edition, Saunders College Publishing, 1988.
    [14] N.J. Turro, Modern Molecular Photochemistry, Mill Valley, University Science Books, California, 1991.
    [15] D.A. Skoog, E.J. Holler, T.A. Nieman, Principles of Instrumental Analysis, 5th edition, Saunders College Publishing, 1997.
    [16] M. Pope, C.E. Swenberg, Electronic processes in organic crystals and polymers, 2nd ed. Oxford University Press, New York, 1999
    [17] Vladimir Bulovic, Massachussetts Institute of Technology, phd. thesis, 2001.
    [18] T. Förster, Ann. Phys., 1948, 2, 55.
    [19] D.H. Hwang , J.D. Lee, M.J. Lee, Curr. Appl. Phys., 2005, 5, 244
    [20] K. Sakayori, Y. Shibasaki, M. Ueda, J. Polym. Sci. Part A, 2005, 43, 5571
    [21] D.L. Dexter, J. Chem. Phys., 1953, 21, 836.
    [22] 黃孝文,國立成功大學碩士論文,2002。
    [23] Z. Bao, Y. Feng, A. Dodabalapur, V.R. Raju, A.J. Lovinger,
    Chem. Mater., 1997, 9, 1299.
    [24] S.C. Chang, J. Bharathan, Y. Yang, Appl. Phys. Lett., 1998, 73, 2561.
    [25] A.O. Patil, Y. Ikenoue, F. Wudl, A.J. Heeger, J. Am. Chem. Soc.,
    1987, 109, 1858.
    [26] H. Ishii, K. Sugiyama, E. Ito, K. Seki, Adv. Mater., 1999, 11, 605.
    [27] S.K. Sol, W.K. Choil, C.H. Chengl, L.M. Leung, C.F. Kwong, Appl. Phys. A, 1999, 68, 447.
    [28] P.K.H. Ho, M. Granström, R.H. Friend, N.C. Greenham, Adv. Mater., 1998, 10, 769.
    [29] J.S. Kim, M. Granström, R.H. Friend, N. Johansson, W.R. Salaneck, R. Daik, W.J. Feast, F. Cacialli, J. Appl. Phys., 1998, 84, 6859.
    [30] J.S. Kim, R.H. Friend, F. Caciallia Appl. Phys. Lett., 1999, 74, 3084.
    [31] S.A. VanSlyke, C.H. Chen, C.W. Tang, Appl. Phys. Lett., 1996, 69, 2160.
    [32] Y. Shirota, Y. Kuwabara, H. Inada, Appl. Phys. Lett., 1994, 65, 807.
    [33] Y. Yang, A.J. Heeger, Appl. Phys. Lett., 1994, 64, 1245.
    [34] Y. Cao, G. Yu, C. Zhang, R. Menon, A.J. Heeger, Synth. Met., 1997, 87, 171.
    [35] Z.B. Deng, X.M. Ding, S.T. Lee, W.A. Gambling, Appl. Phys. Lett., 1999, 74, 2227.
    [36] A. Elschner, F. Bruder, H.W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm, R. Wehrmann, Synth. Met., 2000, 111, 139.
    [37] P.M. Borsenberger, W. Mey, A. Chowdry, Appl. Phys. Lett., 1978, 49, 273.
    [38] Y. Eamada, T. Sano, M. Fujita, T. Fujita, Y. Nishio, K. Shibata, Chem. Lett., 1993, 905.
    [39] J. Liu, G. Tu, Q. Zhou, Y. Cheng, Y. Geng, L. Wang, D. Ma, X. Jing, F. Wang, J. Mater. Chem., 2006, 16, 1431.
    [40] H.C. Lin, H.H. Sung, C.M. Tsai, K.C. Li, Polymer, 2005, 46, 9810.
    [41] Q. Hou, Q. Zhou, Y. Zhang, W. Yang, R. Yang, Y. Cao,
    Macromolecules, 2004, 37, 6299.
    [42] C.H. Cheon, S.H. Joo, K. Kim, J. Jin, H.W. Shin, Y.R. Kim,
    Macromolecules, 2005, 38, 6336.
    [43] P.V. Lawson, J.L. Bredas, E. Zojer, R. Ganther, P.S. Freitas,
    M. Forster, U. Scherf, Adv. Funct. Mater., 2004, 14, 1097.
    [44] C. Chi, C. Im, V. Enkelmann, A. Ziegler, G. Lieser, G. Wegner
    Chem. Eur. J., 2005, 11, 6833.
    [45] E.J.W. List, R. Guentner, P.S. Freitas, U. Scherf, Adv. Mater., 2002, 14, 374.
    [46] C.W. Wu, C.M. Tsai, H.C. Lin, Macromolecules 2006, 39, 4298.
    [47] H.H. Sung, H.C. Lin, Macromolecules, 2004, 37, 7945.
    [48] T. Miteva, A. Meisel, W. Knoll, H.G. Nothofer, U. Scherf, D.C. Muller, K. Meerholz, A. Yasuda, Adv. Mater., 2001, 13, 565.
    [49] H.J. Cho, B.J. Jung, N.S. Cho, J. Lee, H.K. Shim, Macromolecules, 2003, 36, 6704.
    [50] C.W. Wu, H.C. Lin, Macromolecules, 2006, 39, 7232.
    [51] Z. Li, C. Di, Z. Zhu, G. Yu, Z. Li, Q. Zeng, Q. Li, Y. Liu, G. Qin,
    Polymer, 2006, 47, 7889.
    [52] S.H. Chen, C.S. Shiau, L.R. Tsai, Y. Chen, Polymer, 2006, 47, 8436.
    [53] 劉挺中,國立成功大學碩士論文,2005。
    [54] J.J. Dittmer, E.A. Marseglia, R.H. Friend, Adv. Mater., 2002, 17, 1270.
    [55] P. Peumans, S.R. Forrest, Appl. Phys. Lett., 2001, 79, 126.
    [56] H. Hoppe, N.S. Sariciftci, J. Mater. Res., 2004, 19, 1924.
    [57] J.Y. Kim, A.J. Bard, Chem. Phys. Lett., 2004, 383, 11.
    [58] http://www.wmo.int/pages/index_en.html
    [59] http://www.newport.com/Introduction-to-Solar-Radiation/411919/ 1033/catalog.aspx
    [60] A.K. Ghosh, T. Feng, J. Appl, Phys., 1978, 49, 5982.
    [61] C.W. Tang, Appl. Phys. Lett., 1986, 48, 183.
    [62] H.W. Kroto, J.R. Heath, S.C. O`Brien, R.F. Curl, R.E. Smalley, Nature, 1985, 318, 162.
    [63] J.J.M. Halls, K. Pichler, R.H. Friend, S.C. Moratti, A.B. Holmes, Appl. Phys. Lett., 1996, 68, 3120.
    [64] G. Yu, K. Pakbaz, A.J. Heeger, Appl. Phys. Lett., 1994, 64, 3422.
    [65] J.C. Hummelen, B.W. Knight, F. LePeq, F. Wudl, J. Yao, C.L. Wilkins, J. Org. Chem., 1995, 60, 532.
    [66] G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science, 1995, 270, 1789.
    [67] R.A.J. Janssen, J.C. Hummelen, N.S. Saricftci, MRS Bull., 2005, 30, 33.
    [68] M.M. Wienk, J.M.K. Wiljan, J.H. Verhees, J. Knol, J.C. Hummelen, P.A. van Hal, R.A.J. Janssen, Angew. Chem. Int. Ed., 2003, 42, 3371.
    [69] P. Schilinsky, C. Waldauf, C.J. Brabec, Appl. Phys. Lett., 2002, 81, 3885.
    [70] J.Y. Kim, S.H. Kim, H.H. Lee, K. Lee, W. Ma, X. Gong, A.J. Heeger, Adv. Mater., 2006, 18, 572.
    [71] G. Brocks, A. Tol, J. Phys. Chem., 1996, 100, 1838.
    [72] G. Brocks, A. Tol, Synth. Met., 1996, 76, 213.
    [73] Y.T. Chang, S.L. Hsu, M.H. Su, K.H. Wei, Adv. Funct. Mater., 2007, 17, 3326.
    [74] Y.T. Chang, S.L. Hsu, G.Y. Chen, M.H. Su, T.A. Singh, K.H. Wei, Adv. Funct. Mater., 2008, 18, 2356.
    [75] J.F. Morin, M. Leclerc, D. Ades, A. Siove, Macromol. Rapid Commun., 2005, 26, 761.
    [76] J.F. Morin, N. Drolet, Y. Tao, M. Leclerc, Chem. Mater., 2004, 16, 4619.
    [77] N. Drolet, J.F. Morin, N. Leclerc, S. Wakim, Y. Tao, M. Leclerc, Adv. Funct. Mater., 2005, 15, 1671.
    [78] L.M. Andersson, F. Zhang, O. Inganäs, Appl. Phys. Lett., 2007, 91, 071108.
    [79] D.J.D. Moet, M. Lenes, J.D. Kotlarski,; S.C. Veenstra,; J. Sweelssen, M.M. Koetse, P.W.M. Blom, Org. Electron., 2009, 10, 1275.

    下載圖示 校內:2021-12-31公開
    校外:2021-12-31公開
    QR CODE