| 研究生: |
吳國雄 Wu, Kuo-Hsiung |
|---|---|
| 論文名稱: |
根據能量吸收能力之車輛側面碰撞桿設計及驗證 Design and Validation of Vehicle Side Impact Bars Based on Energy Absorbing Capabilities |
| 指導教授: |
黃才烱
Huang, Tsai-Jeon |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 側面碰撞桿 、有限元素法 、內插法 、仿凸輪設計 |
| 外文關鍵詞: | Side Impact Bars, Cam, Finite Element Method, Interpolation |
| 相關次數: | 點閱:104 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
經由工業的發展進步,汽車業也因此得以蓬勃發展,就安全性而言,從一開始注重車體的強度,開始轉為吸能的設計,或是降低駕駛人甚至是其他行人的撞擊能量,在維持一定的強度下,利用結構性質或是額外的物質吸收能量,在地狹人稠的城市,發生車禍的次數十分頻繁,尤其在側面撞擊上,由於車門的厚度遠低於前方碰撞桿,故側面撞擊的致死率,是所有車禍類型中最高的,如何在意外發生時保護駕駛人,成為很重要的課題,各國對於撞擊的測試上,皆有一定的測試方式和規範。因此本論文的研究宗旨在於設計側面碰撞桿的結構,除了側面碰撞桿結構上的吸能效果,額外利用吸能設計的軟性材質的應變能和摩擦力能量耗損撞擊時所輸入的能量,並增加側面碰撞桿的可壓縮量。
在本論文中主要分為兩個部分討論,一為側面碰撞桿的碰撞測試,二為吸能設計的吸能簡化測試。兩部分皆經由有限元素法進行模擬,第一部份將討論各不同形狀的側面碰撞桿的吸能能力與可壓縮量等等,第二部份的吸能設計,參考凸輪的設計概念,在轉動時會產生位移變化,將凸輪的一部分改為性質較為軟的材質,使從動件位移變化轉為對凸輪的壓縮位移,對軟性材質進行壓縮,同時藉由內插法找出最佳的設計尺寸,本研究之吸能設計,除了能增加側面碰撞桿的總壓縮距離,亦可將部分壓縮距離轉換成軟性材質的應變能與摩擦耗能,藉此增加側面碰撞桿裝置的吸能效果。
The vehicle accidents have become more frequent than the past in cities with high population. Among these vehicle accidents, the most fatal one is the side impact vehicle accidents. Therefore, the passenger protection issue about side impact can’t be ignore. Many countries and institution have established relevant regulation and the ways to test the vehicle as constraint to automotive manufacture forcing them to pay attention to this issue. Thus, there have been many design for side impact vehicle. No matter which design, the purposes are absorbing the energy and avoiding the impactor intrusion.
The main topic of this study is to improve the energy absorbing capabilities of side impact bars design and validation. This study is divided into two parts to discuss the new design.
The first part is concerning about the absorbing behavior about the side impact bars with different shape. The second part is concerning about analysis the new absorbing equipment The absorbing equipment refer the principle of cam and replace some part of cam with soft material. Both of these parts adopt the finite element method to simulation. In addition, at the second part, the study adopt the interpolation to define the best size of new design and estimate the frictional energy. At last, combine these two parts. This study provides the different design match for different intent, such as the best compression displacement and the best absorbing capabilities.
Keyword: Side Impact Bars, Cam, Finite Element Method, Interpolation
AISI 1060 Steel, as Rolled from MatWeb. Available: http://www.matweb.com/-
search/datasheet.aspx?matguid=ecd1f5f21fe943e7a892d70ea57a43e8&ckck=1.
Cheon, S. S., Lee, D. G.and Jeong, K. S., “Composite Side-Door Impact Beams for
Passenger Cars.” Composite Structures, vol. 38, No 1-4, pp. 229-239, 1997.
Childs, P. R. N. and Stobart, R. K., “Analysis of FRP Side-Door Impact Beam.” Total
Vehicle Technology, Brighton (UK), 2002.
Cho, K. H., Kyungki-do, “Side Impact Bar Assembly”, US006053565A, 1996.
Coefficient of Restitution from Wikipedia. Available: https://en.wikipedia.org/wiki/- Coefficient_of_restitution.
EUROPEAN NEW CAR ASSESSMENT PROGRAMME, “Oblique Pole Side Impact
Testing Protocol.” Euro NCAP, European Union, 2017.
EUROPEAN NEW CAR ASSESSMENT PROGRAMME, “Side Impact Mobile
Deformable Barrier Testing Protocol.” Euro NCAP, European Union, 2017.
EuroNCAP Side Impact (Left-Hand Drive Vehicles) from Wikimedia. Available: https:
//commons.wikimedia.org/wiki/File:EuroNCAP_SIDE_IMPACT_(left-hand_
drive_veicles).png.
Inami, S., Koike, K., Hayashida, M. and Yamaoka, S., “Reinforcement Member for an
Automoble Door”, US04090734A, 1978.
INSURANCE INSTITUTE FOR HIGHWAY SAFTY, “Side Impact Crashworthiness
Evaluation Crash Test Protocol (Version X).” IIHS, Alington, 2017.
Interpolation from Wikipedia. Available: https://en.wikipedia.org/wiki/Interpolation.
Kuroda, S., Takahashi, K., Akamatsu, H. and Gozu, H., “Door Impact Beam for an
Automoble”, US005232261A, 1993.
Liu, Y., “ANSYS ans LS-DYNA Used for Structure Analysis.” International Journal
of Computer Aided Engineering and Technology, vol. 1, pp. 31-34, 2008.
McNeill, A. and Haberl, J., “Current Worldwide Side Impact Activities”, 2005.
Overview of Materials for Thermoset Polyurethane, Elastomer, Unreinforced from
MatWeb. Available: http://www.matweb.com/search/DataSheet.aspx?MatGUID-
=26606798bc9d4538a7c7eadf78ab082b.
Ponnadai, S., “Analysis of Side Impact Beams in Car Side Door.” Faculty of
Mechanical Engineering and Design, Kaunas, 2018.
Sapuan, S. M., Shaharuzaman, M. A. and Mansor, M. R., “Composites Side Door
Impact Beam: A Review.” 2016.
Shaharuzaman, M. A., Sapuan, S. M. and Mansor, M. R., “Passenger Car’s Side Door
Impact Beam: A Review.” Journal of Engineering and Technology, vol. 9, No. 1
Jan-June, 2018.
Teng, T. L., Chang, K. C. and Nguyen, T. H., “Crashworthiness Evaluation of Side-
Door Beam of Vehicle”, Technische Mechanic, 2007.
Toyota Corolla Body Structure. Available: http://www.boronextrication.com/2014/-
02/21/2014-toyota-corolla-body-structure-2/.
U.S. DEPARTMENT OF TRANSPORTATION, “Evaluation of FMVSS214 Side
Impact Protection Dynamic Performance Requirement.” NHTSA, Washington,
1999.
U.S. DEPARTMENT OF TRANSPORTATION, “Traffic Safety Facts 2016.” NHTSA,
Washington, 2018.
中華民國交通部統計查詢網,經由:https://stat.motc.gov.tw/mocdb/stmain.jsp?-
sys=100,2019。