簡易檢索 / 詳目顯示

研究生: 葉佳益
Yeh, Jia-Yi
論文名稱: 電變流體應用於智能結構之振動與波傳分析
Vibration and Wave Propagation Analysis of the Smart Structures with Electrorheological Fluid
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 107
中文關鍵詞: 穩定性分析電變流體週期結構
外文關鍵詞: periodic structure, stability analysis, electrorheological fluid
相關次數: 點閱:81下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要研究電變流體應用於智能結構之自由振動、阻尼行為與動態穩定特性的行為,並配合原有的振動分析模組,加以分析此種智能週期結構的波動傳遞特性。在本文中振動與動態穩定部份將以三明治方板為研究模型,而週期結構之波傳分析模型則以三明治樑為分析對象。首先以漢米爾頓原理推導其運動方程式,其中包含轉動慣量、剪力變形、外力作功及剪力層等效應,方板系統中所使用的電變流體以線性阻尼材料來近似,其材料性質是以複數的形式來加以描述,再以有限元素法方式來得到系統的馬修方程式,最後藉此複數形式的特徵值問題即可解得系統的自然振動頻率、模態損失因子,在動態穩定性問題方面,將利用Bolotin的方法計算系統動態穩定與不穩定區域間的邊界。接著利用有限元素分析的基礎,配合轉移矩陣法的應用,分析在週期結構下波動的特性行為,並研究在不同週期與材料的組合下,對於系統的波傳能隙分布的影響。

      本文探討了數種參數,例如拘束層與電變流體層的材料特性和厚度,以及施加的電場強度等等,對三明治方板系統的自然振動頻率、模態損失因子及系統動態不穩定區域的影響變化;最後亦探討在不同貼覆面積下,此種週期系統的波傳特性。由數值分析的結果中可以得知,較厚的拘束層或是電變流體層的貼覆並不一定能得到較佳的阻尼特性,而系統的模態損失因子也會隨著施加電場強度的改變而產生變化。因此,在此方板系統上貼覆此種主動式智能材料阻尼層除了可使系統更加的穩定外,也可達到主動控制的效果。最後亦針對聲波在週期結構下的特性來討論其波傳現象,從數據分析的結果中可以得知,可以藉由不同週期的材料組合以及貼覆的材料特性,達到類似光纖波導的效果。

     In this thesis, an investigation has been carried out on the dynamic characteristics of an sandwich plate with an electrorheological (ER) fluid core. The isotropic or orthotropic rectangular plate is covered an electrorheological fluid core and a constraining layer to improve the stability of the system. In this study, the finite element method and the harmonic balance method are used to calculate the vibration characteristics and the principal instability regions of the sandwich plate. Numerical results are presented to study the effects of various parameters, such as thickness ratio, stiffness ratio, and applied electric field on the vibration behaviors and principal instability regions of the sandwich plate. Rheological property of the electrorheological fluid materials, such as viscosity, plasticity, and elasticity can be changed when applying an electric field. When the electric field is applied on the sandwich structure, the damping of the system is more effective. The ER fluid core is found to have a significant effect on the location of the boundaries of the dynamic instability regions.

     Periodic structures can act as filters for wave propagation within certain bands of frequency called stop bands. The partially constrained layer damping (CLD) treatments are placed periodically along the beam and covered with a constrained layer to control the longitudinal wave propagation in this beam. The CLD placed on the beams act as the sources of impedance mismatch with viscoelastic characteristics. The location and width of the stop bands can be changed with different configurations of the periodic structure.

     The finite element model and the transfer matrix method are developed to study the one-dimensional, periodically structural problems to predict the performance of the system. The behaviors of the periodic structure are evaluated at different length ratios and base beam materials. The investigation in the present study provides the basic guidelines to design periodic structures with smart materials to achieve desired filtering characteristics.

    目錄 摘要 i 英文摘要 ii 誌謝 iv 目錄 v 表目錄 viii 圖目錄 ix 符號說明 xiv 第一章 緒論 1 1-1 前言 1 1-2 電流變效應簡介 2 1-3 文獻回顧 3 1-3-1 結構振動與動態穩定性 3 1-3-2 週期結構 7 1-4 本文架構 8 第二章 含電變流體三明治方板系統之振動分析 9 2-1 系統運動方程式推導 9 2-1-1 問題簡介 9 2-1-2 電變流體之黏彈模型 10 2-1-3 應變-位移關係式 13 2-2 有限元素模型 14 2-2-1 系統能量式推導 14 2-2-2 有限元素模型推導 16 2-3 數值結果與討論 19 2-4 結論 22 第三章 含電變流體三明治方板之動態穩定性分析 33 3-1 系統運動方程式推導 33 3-1-1 運動方程式 33 3-1-2 邊界頻率方程式 34 3-2 數值結果與討論 36 3-3 結論 38 第四章 含電變流體正交性三明治方板系統之振動分析 45 4-1 系統運動方程式推導 45 4-1-1 問題簡介 45 4-1-2 應變-位移關係式 45 4-2 有限元素模型 46 4-2-1 系統能量式推導 46 4-2-2 有限元素模型推導 47 4-3 數值結果與討論 48 4-4 結論 52 第五章 含電變流體正交性三明治方板之動態穩定性分析 61 5-1 邊界頻率方程式 61 5-2 數值結果與討論 62 5-3 結論 64 第六章 週期性三明治結構之波動分析 72 6-1 系統運動方程式推導 72 6-1-1 應變-位移關係式 72 6-1-2 系統能量式推導 73 6-1-3 有限元素模型推導 74 6-2 數值結果與討論 77 6-3 結論 81 第七章 綜合結論與建議 96 7-1 綜合結論 96 7-2 未來研究方向與建議 97 參考文獻 98 附錄A 105 附錄B 106 自述 107

    參考文獻
    [1] Winslow W.M., ‘Induced fibration of suspensions’, Journal of Applied Physics 20: 1137-1140 (1949).
    [2] Jordan T.C. and Shaw M.T., Transactions on Electrical Insulation 24(5), 849-878, Electrorheology.
    [3] Rao S.S., Mechanical Vibration, Addison-Wesley, New York (1995).
    [4] Nashif D., Jones D.I.G., and Henderson J.P., Vibration Damping, John Wiley &Sons, New York (1985).
    [5] Ugural A.C., Mechanics of Materials, McGraw-Hill, New York (1991).
    [6] Bolotin V.V., The dynamic Stability of Elastic Systems, Holden-Day, San Francisco (1964).
    [7] Leissa A.W., Vibration of plates, NASA SP-160 (1969).
    [8] Vera S.A., Laura P.A.A., and Vega D.A., ‘Transverse vibrations of a free-free circular annular plate’, Journal of Sound and Vibration 224: 379-383(1999).
    [9] Filipich C.P. and Rosales M.B., ‘Arbitrary precision frequencies of a free rectangular thin plate’, Journal of Sound and Vibration 230 :521-539 (2000).
    [10] Gorman D.J., ‘Free vibration analysis of completely free rectangular plates by the superposition-Galerkin method’, Journal of Sound and Vibration 237: 901-914 (2000).
    [11] Shuyu S., ‘Study on the flexural vibration of rectangular thin plates with free boundary conditions’, Journal of Sound and Vibration 239: 1063-1071 (2001).
    [12] Hurlebaus L., Gaul L., and Wang J.T.-S, ‘An exact series solution for calculating the eigenfrequencies of orthotropic plates with completely free boundary’, Journal of Sound and Vibration 244: 747-759 (2001).
    [13] Kerwin E.M. Jr., ‘Damping of flexural waves by a constrained viscoelastic layer’, Journal of the Acoustical Society of America 31: 952-962 (1959).
    [14] Ross D., Ungar E.E., and Kerwin E.M. Jr., ‘Damping of plate flexural vibrations by means of viscoelastic laminae’, Structural Damping: Colloquium on Structural Damping, ASME Annual Meeting(J.E. Ruzicka, editor) (1959).
    [15] DiTaranto R.A., ‘Theory of vibratory bending of elastic and viscoelastic layered finite-length-beams’, Journal of Applied Mechanics, Transactions of the American Society Series E 87:881-887 (1965).
    [16] Mead D.J. and Markus S., ‘The forced vibration of a three-layer damped sandwich beam with arbitrary boundary conditions’, Journal of Sound and Vibration 10: 163-175 (1969).
    [17] Mead D.J. and Markus S., ‘Loss factors and resonant frequencies of encastre damped sandwich beams’, Journal of Sound and Vibration 12: 99-112 (1970).
    [18] Rao D.K., ‘Transverse vibrations of pre-twisted sandwich beams’, Journal of Sound and Vibration 44(2):159-168 (1976).
    [19] Rao D.K., ‘Frequency and loss factors of sandwich beams under various boundary conditions’, Journal of mechanical Engineering Science 20:271-282 (1978).
    [20] Reissner E., ‘Finite Deflections of Sandwich Plates’, Journal of Aeronaut Sciences 435-440 (1948).
    [21] Liaw B.D. and Little R.W., ‘Theory of Bending Multilayer sandwich plates’, Journal of AAIA 5: 301-301 (1967).
    [22] Azar J.J., ‘Bending Theory of Multilayer orthotropic sandwich plates’, Journal of AAIA 6: 2166-2169 (1968).
    [23] Yu Y.Y., ‘A New Theory of Elastic Sandwich Plates- One-Dimensional Case’, Journal of Applied Mechanics 81: 415-421 (1959).
    [24] Yu Y.Y., ‘Forced Flexural Vibrations of Sandwich Plates in Plane Strain’, Journal of Applied Mechanics 82: 535-540 (1960).
    [25] Yan M.J., ‘Governing Equations for Vibration Constrained-Layer Damping Sandwich Plates and Beams’, Journal of Applied Mechanics 1041-1046 (1972).
    [26] O’Conner D.J., ‘A Finite Element Package for the Analysis of Sandwich Construction’, Composite Structures 8: 143-161 (1987).
    [27] Alam N. and Asnani N.T., ‘Vibration and Damping analysis of multilayered layer’, Journal of Sound and Vibration 97: 597-614 (1984).
    [28] Alam N. and Asnani N.T., ’Refined vibration and damping analysis of multilayered rectangular plates’, Journal of Sound and Vibration 119: 347-362 (1987).
    [29] Bailey T. and Hubbard J., ‘Distributed piezo-electric polymer active vibration control of a cantilever beam’, Journal of Guidance and Control 8: 606-611 (1985).
    [30] Baz A., Active Constrained Layer Damping, US patent application (1993a).
    [31] Baz A., Active Constrained Layer Damping, DAMPING’93 Conference (1993).
    [32] Baz A. and Ro J., ‘Partial treatment of flexible beams with active constrained layer damping’, ASME-AMD 167: 61-80 (1993).
    [33] Baz A. and Ro J., ‘Actively-controlled constrained layer damping’, Sound and Vibration Magazine 28:18-21 (1994).
    [34] Baz A. and Ro J., ‘Performance characteristics of active constrained layer damping’, Journal of Shock and Vibration 2: 33-42 (1995).
    [35] Lall A.K., Asnani N.T. and Nakra B.C., ‘Damping analysis of partially covered sandwich beams’, Journal of Sound and Vibration 123: 247-259 (1988).
    [36] Kung S.W. and Singh R. Complex Eigensolutions of Rectangular Plates with Damping Patches. Journal of Sound and Vibration 216:1-28 (1998).
    [37] Kanematsu H.H., Hirano Y. and Iyama H., ‘Bending and vibration of CFRP- faced rectangular sandwich plates’, Composite Structures 10: 145-163 (1988).
    [38] Lok T.S. and Cheng Q.H., ‘Elastic stiffness properties and behavior of truss-core sandwich panel’, Journal of Structural Engineering 126: 552-559 (2000).
    [39] Lok T.S. and Cheng Q.H., ‘Free vibration of clamped orthotropic sandwich panel’, Journal of Sound and Vibration 229: 311-327 (2000).
    [40] Lok T.S., ‘Bending and forced vibration response of a clamped orthotropic thick plate and sandwich panel’, Journal of Sound and Vibration 245(1): 63-78 (2001).
    [41] Don D.L., An investigation of electrorheological material adoptive structures, Master’s Thesis Lehigh University, Bethlehem, Pennsylvania (1993).
    [42] Choi S.B., Thompson B.S., and Gandhi M.V., ‘Smart structures incorporating electro-rheological fluids for vibration-control and active-damping applications: an experimental investigation’, Proceedings of the 12th Biennial ASME Conference on Mechanical Vibration and Noise, Montreal, Canada (1989).
    [43] Choi Y., Sprecher A.F., and Conrad H., ‘Response of electrorheological fluid-filled laminate composite to force vibratoin’, Journal of Intelligent Material Systems and Structures 3: 17-29 (1992).
    [44] Yalcintas M., Coulter J.P., and Don D.L., ‘Structural modeling and optimal control of control of electrorheological material based adaptive beams’, Smart Material and Structures 4: 207-214 (1995).
    [45] Yalcintas M. and Coulter J.P., ‘Analytical modeling of electrorheological material based adaptive beams’, Journal of Intelligent Material Systems and Structures 6: 488-497 (1995).
    [46] Yalcintas M. and Coulter J.P., ‘Electrorheological material based adaptive beams subjected to various boundary conditions’, Journal of Intelligent Material Systems and Structures 6: 700-717 (1995).
    [47] Oyadiji S.O., ‘Applications of electro-rheological fluids for constrained layer damping treatment of structures’, Journal of Intelligent Material Systems and Structures 7; 541-549 (1996).
    [48] Lee C.Y., ‘Finite element formulation of a sandwich beam with embedded electro-rheological fluids’, Journal of Intelligent Material Systems and Structures 6: 718-728 (1995).
    [49] Choi S.B., Park Y.K., and Jung S.B., ’Modal characteristics of a flexible smart plate filled with electrorheological fluids’, Journal of Aircraft 36(2): 458-464 (1999).
    [50] Kang Y.K., Kim J., and Choi S.B., ‘Passive and active damping characteristics of smart electro-rheological composite beams’, Smart Material and Structures 10: 724-729 (2001).
    [51] Hsu C.S., ‘On the parametric excitation of a dynamic system having multiple degree of freedom’, Journal of Applied Mechanics, Transactions ASME 30: 367-372 (1963).
    [52] Timoshenko and Gere, Theory of Elastic Stability, McGraw-Hill Book Company.
    [53] Brown J.E., Hutt J.M., and Salama A.E., ‘Finite element solution to dynamic stability of bar’, AIAA Journal 6: 1423-1426 (1968).
    [54] Thomas J. and Abbas B.A.H., ‘Dynamic stability of Timoshenko beams by finite element method’, Journal of Engineering for Industry, Transactions ASME 11:1145- (1976).
    [55] Abbas B.A.H., ‘Dynamic stability of a rotating Timoshenko beam with a flexible root’, Journal of Sound and Vibration 108: 25- (1986).
    [56] Chen L.W. and Ku D.M., ‘Dynamic stability analysis of a rotating shaft by the finite element method’, Journal of Sound and Vibration 143: 143-151 (1990).
    [57] Chen L.W. and Peng W.K., ‘Dynamic stability of rotating blade with geometric non-linearty’, Journal of Sound and Vibration 187(3): 421-433 (1995).
    [58] Chen L.W. and Shen G.S., ‘Dyanmic stability of cracked rotating beams of general orthotropy’, Composite Structures 37:165-172 (1997).
    [59] Steven K.K. and Evan-Iwanowski, ’Parametric resonance of viscoelastic perfect column’, International Journal of Solids and Structures 5: 755-765 (1969).
    [60] Dost S. and Glockner, ‘On the dynamic stability of viscoelastic perfect column’, International Journal of Solids and Structures 18: 587-596 (1982).
    [61] Saito H. and Otomi K., ‘Parametric response of viscoelastically supported beams’, Journal of Sound and Vibration 63(2): 169-178 (1979).
    [62] Cederbaum G. and Mond M., ‘Stability properties of a viscoelastic column under a periodic force’, Journal of Applied Mechanics, Transactions of the ASME 59: 16-19 (1992).
    [63] Ray K. and Kar R.C., ‘Parametric instability of a sandwich beam under various boundary conditions’, Computers and Structures 55(5): 857-870 (1995).
    [64] Ray K. and Kar R.C., ‘Dynamic stability of a pre-twisted, three layered, symmetric sandwich beam’, Journal of Sound and Vibration 183(4): 591-606 (1995).
    [65] Ray K. and Kar R.C., ‘The parametric instability of partially covered sandwich beams’, Journal of Sound and Vibration 197(2): 137-152 (1996).
    [66] Briseghella L. and Pellegrino C., ‘Dynamic stability of elastic structures: a finite element approach’, Computers and Structures 69: 11-25 (1998).
    [67] Takahasi K. and Konishi Y., ‘Dynamic stability of rectangular plate subjected to distributed in-plane dynamic force’, Journal of Sound and Vibration 123(1): 115-127 (1988).
    [68] Deolasi P.J. and Datta P.K., ‘Parametric instability characteristics of rectangular plates subjected to localized edge compressing (compression or tension)’, Computers and Structures 54: 73-82 (1995).
    [69] Srinivasan R.S. and Chellapandi P., ‘Dynamic stability of rectangular laminated composite plates’, Computers and Structures 24: 233-238 (1986).
    [70] Moorthy J. and Reddy J.N., ‘Parametric instability of laminated composite plates with transverse shear deformation’, Intelligent Journal of Solids and Structures 26: 801-811 (1990).
    [71] Chen L.W. and Yang J.Y., ‘Dynamic Stability of laminated composite plates by finite element method’, Computers and Structures 36: 845-851 (1990).
    [72] Brillouin L., Wave propagation in periodic structures 2nd ed. Dover, New York (1953).
    [73] Heckl M.A., ‘Investigation on the vibration of grillages and other simple beam structures’, Journal of the Acoustical Society of America 36: 1335-1343 (1964).
    [74] Mead D.J., ‘Free wave propagation in periodically supported, finite beams’, Journal of Sound and Vibration 11: 181-197 (1970).
    [75] Mead D.J. and Wilby E.G., ‘The random vibrations of a multi-supported heavily damped beam’, The Shock and Vibration Bulletin 35: 45-55 (1966).
    [76] Mead D.J., ‘Wave propagation and natural modes in periodic systems’, Journal of Sound and Vibration 40: 1-18 (1975).
    [77] Mead D.J. and Markus S., ‘Coupled flexural-longitudinal wave motion in a periodic beam’, Journal of Sound and Vibration 90: 1-24 (1983).
    [78] Mead D.J., ‘A new method of analyzing wave propagation in periodic structures’, Journal of Sound and Vibration 104: 9-27 (1986).
    [79] Mead D.J. and Bardell N.S., ‘Free vibration of a thin cylindrical shell with periodic circumferential stiffeners’, Journal of Sound and Vibration 115: 499-521 (1987).
    [80] Mead D.J. and Yaman Y., ‘The harmonic response of rectangular sandwich plates with multiple stiffening: a flexural wave analysis’, Journal of Sound and Vibration 145: 409-428 (1991).
    [81] Mead D.J., ‘Wave propagation in continuous periodic structures: search contributions from Southampton 1964-1995’, Journal of Sound and Vibration 190: 495-524 (1996).
    [82] Mester S. and Benaroya H., ‘Periodic and near-periodic structures’, Shock and Vibration 2: 69-95 (1995).
    [83] Ruzzene M. and Baz A., ‘Control of wave propagation in periodic composite rods using shape memory inserts’, Journal of Vibration and Acoustics 122: 151-159 (2000).
    [84] Ruzzene M. and Baz A., ‘Attenuation and localization of wave propagation in periodic rods using shape memory inserts’, Smart Materials and Structures 9: 805-816 (2000).
    [85] Lin Y.K. and Mcdaniel T.J., ‘Dynamics of beam-type periodic structures’, Journal of Engineering for Industry 91: 1133-1141 (1969).
    [86] Ruzzene M. and Baz A., ‘Active control of wave propagation in periodic fluid-loaded shells’, Smart Materials and Structures 10: 893-906 (2001).
    [87] Solaroli S., Gu Z., Baz A., and Ruzzene M., ‘Wave propagation in periodic stiffened shells: spectral finite element modeling and experiments’, Journal of Vibration and Control 9: 1057-1081 (2003).
    [88] Mangaraju V. and Sonti V.R., ‘Wave attenuation in periodic three-layered beams: analytical and FEM study’, Journal of Sound and Vibration 276: 541-570 (2004).
    [89] Barbarosie C. and Neves M.M., ‘Periodic structures for frequency filtering: analysis and optimization’, Computers and Structures 82: 1399-1403 (2004).
    [90] Drozdow A.D., ‘Mechanics of Viscoelastic Solids’, John Wiley & Sons.Chichester, uk (1998).
    [91] Golden J.M. and Graham G.A.C., ‘Boundary Value Problems in Linear Viscoelasticity’, Springer-Verlag Berlin Heidelberg New York (1988).
    [92] Zhang Q.J. and Sainsbury M.G., ‘The Galerkin Element Method Applied to the Vibration of Rectangular Damped Sandwich Plate’, Computers and Structures 74:717-730 (2000).
    [93] Chen Y.Z., ‘Evaluation of fundamental vibration frequency of an orthotropic bending plate by using an iterative approach’, Computer Methods in Applied Mechanics and Engineering 161: 289-296 (1998).

    下載圖示 校內:2006-06-20公開
    校外:2006-06-20公開
    QR CODE