簡易檢索 / 詳目顯示

研究生: 閻慶昌
Yen, Ching-Chang
論文名稱: QFN構裝體錫球接點結構探討
A Study of Solder Joint Structure in QFN Package
指導教授: 陳榮盛
Chen, R. S.
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 93
中文關鍵詞: 黏塑性亞蘭德模型疲勞壽命
外文關鍵詞: Viscoplastic, Fatigue life, Anand's model
相關次數: 點閱:105下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • QFN構裝體是由許多材料所組成,當受到溫度循環負載,由於各元件材料熱膨脹係數的不一致而導致構裝體結構變形,進而造成錫球產生疲勞破壞,因此本文針對QFN構裝體為對象,考慮兩種錫球材料與不同錫球高度,受到溫度循環變化的負載,探討錫球疲勞可靠度的影響。其分析模型係採用ANSYS有限元素分析軟體先建構1/4構裝體,並以亞蘭德模式描述錫球黏塑性行為模式,其它材料則視為線彈性。而溫度循環之變化範圍為-40℃~125℃,每循環的高低溫持平時間各為5分鐘、升降溫時間各為10分鐘;每循環為30分鐘。然後再計算最外側錫球(導線架與基板間)之變形、應力與應變及遲滯曲線等機械行為之變化情形,並將等效應變範圍值代入Coffin-Manson計算公式中,以預估錫球之疲勞壽命。

    QFN package consists of various components. When the package suffers a temperature cycling load as the different coefficients of thermal expansion(CTE)of those components, it will tend to deform and lead to fatigue of solder joint. For this reason, the effects on fatigue life of QFN package when it is under temperature cycling load by means of two different kinds of solder at different altitudes will have a detail discussion in this paper. Applying finite element analysis software ANSYS for building a 1/4 model. To describe the material behavior of solder, Anand’s model were used in viscoplastic analysis respectively, but other components are assumed to be linear elastic. The temperature fluctuating cycle is between -40℃and 125℃. The package dwells at high temperature or low temperature for 5 minutes and is heated from room temperature to 125℃ in 10 minutes and cooled down from 125℃to -40℃ in 10 minutes. Each cycle is 30 minutes. This paper computed the deformation, stress, strain and hysterisis curve of the outermost solder joint (between leadframe and PCB). The equivalent strain range is substituted
    into Coffin-Mansion formula to estimate the fatigue life of solder joint.

    中文摘要 ………………………………………………………………………………I 英文摘要 ………………………………………………………………………………II 誌謝 ……………………………………………………………………………………III 目錄 ……………………………………………………………………………………IV 表目錄 …………………………………………………………………………………VI 圖目錄 …………………………………………………………………………………VII 符號說明 ………………………………………………………………………………XII 第一章 緒論 1-1 前言 ………………………………………………………………………………1 1-2 QFN構裝體型式簡介 ……………………………………………………………5 1-3 研究動機與目的 …………………………………………………………………7 1-4 文獻回顧 …………………………………………………………………………8 1-5 本文架構 …………………………………………………………………………9 第二章 理論基礎 2-1 熱彈性分析 …………………………………………………………11 2-2 黏塑性材料 …………………………………………………………15 2-3 增量塑性理論 ………………………………………………………17 2-4 黏塑性有限元素模型 ………………………………………………19 2-5 低循環疲勞壽命 ……………………………………………………23 第三章 模型建立 3-1 以Surface-Evolver 求取錫球外型 ………………………………26 3-2 QFN構裝體模型建立 ………………………………………………31 3-3 ANSYS有限元素分析 ………………………………………………34 3-4 QFN構裝體標準樣本模型(Sn63/Pb37球高0.45mm)之探討 ………38 3-4-1 標準樣本模型之網格收斂性分析 …………………………………………38 3-4-2 標準樣本模型之結構探討 …………………………………………………48 第四章 QFN構裝體之評估 4-1 標準樣本模型使用不同錫球材料之結構探討 ……………………57 4-2 兩種錫球材料(Sn63/Pb37, Ag3/Cu0.5)不同球高之結構探討 …59 4-2-1 總體位移分析 …………………………………………………………………59 4-2-2 應力分析 ………………………………………………………………………60 4-2-3 應變分析 ………………………………………………………………………61 4-3 疲勞壽命分析 …………………………………………………………………62 第五章 結論 5-1 探討結論 ……………………………………………………………89 5-2 未來研究方向 ………………………………………………………90 參考文獻 ………………………………………………………………………………91 自述 ……………………………………………………………………………………93

    [1] Lau John H., “Solder Joint Reliability”, Van Nostrand Reinhold (1991)
    [2] Bill stone, John M. Czaronwski, “High performance Flip Chip PBGA
    Development”, IEEE, Components and Technology Conference,2001.
    [3] Amagai M., “Chip Scale Package (CSP) Solder Joint Reliability and
    Modeling”, Microelectronics Reliability, V39, 463-477(1999).
    [4] Lee W. W., Nguyen L. T., Selvaduray G. S., “Solder Joint Fatigue Models:
    Review and Applicability to Chip Scale Package”, Microelectronics
    Reliability, V40, (2000)
    [5] Pfeifer M. J., “Solder Bump Size and Shape Modeling and Experimental
    Validation”, IEEE Transactions on Components, Packaging and Manufacturing
    Technology-Part B, Vol. 20, No. 4,(1997)
    [6] Tower S. C., Su B., and Lee Y. C., “Yield Prediction for Flip-Chip Solder
    Assemblies Based on Solder Shape Modeling”, IEEE Transactions on
    Electronics Packaging Manufacturing, Vol. 22, No.1,(1999)
    [7] Solomon H. D., “Fatigue of 60/40 Solder,” IEEE Transactions on
    Components, Hybrids, and Manufacturing Technology, Vol. CHMT-9,(1986)
    [8] Lau J. H., “Solder Joint Reliability of Flip Chip and Plastic Ball Grid
    Array Assemblies Under Thermal, Mechanical, and Vibrational Conditions,
    ”IEEE Transactions on Components, Packaging and Manufacturing Technology-
    Part B, Vol. 19, No. 4,(1996)
    [9] Darveaux R., “Effect of Simulation Methodology on Solder Joint Crack
    Growth Correlation and Fatigue Life Prediction,” ASME Journal of
    Electronic Packaging, Vol. 124, No3,(2002)
    [10]Zhang L. Arora V., Nguyen L., and Kelkar N., “Numerical and Experimental
    Analysis of Large Passivation Opening for Solder Joint Reliability
    Improvement of Micro SMD Packages,” Microelectronics Reliability, Vol. 44,
    (2004)

    下載圖示 校內:2007-08-10公開
    校外:2007-08-10公開
    QR CODE