| 研究生: |
張文旗 Chang, Wen-Chyi |
|---|---|
| 論文名稱: |
架空輸電線路設計及其與雷擊特性之關係分析探討 Analysis and Investigation of Lightning Characteristics Influence on Overhead Transmission Lines |
| 指導教授: |
黃世杰
Huang, Shyh-Jier |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系碩士在職專班 Department of Electrical Engineering (on the job class) |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 臨界閃絡電壓 、對地落雷密度 |
| 外文關鍵詞: | GFD, CFO |
| 相關次數: | 點閱:77 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
架空輸電線路之絕緣設計涵括考量耐雷設計、耐開關突波及耐污損設計,其中在耐雷設計方面,雖已訂定接地電阻標準,但因架空輸電鐵塔分佈範圍極廣,每一地區的地質、土壤電阻係數及受雷機率嚴重程度不一,如將每一條輸電線路均以同一標準設計,似無法完全解決雷害問題,確有部分研究改進之處。
因此本論文即致力探討現行耐雷設計所採行之對策及規範標準,並模擬測試及分析不同接地電阻對鐵塔塔基、塔頂、礙子連等電壓變化之對應關係,同時與現行設計準則所訂定之高低絕緣側臨界閃絡電壓比較,進而探討加裝線路避雷器及提高礙子連臨界閃絡電壓之相關對策,期能有助於邁向更佳化之架空輸電線路分析設計。
In the insulation design of overhead transmission lines, it often takes the endurable capability of lightning, switching surges and unexpected pollutions scenarios into considerations. Particularly, to resist the influences brought by the lightning, the specifications for the grounding resistance have been carefully made; yet because features of geology, soil resistance coefficients and environments are different, a standard expected to be universally suitable for every overhead transmission lines becomes difficult to cope with the problem encountered, thus motivating the research made in this study.
In this thesis, the current standards and strategies to endure the lightning is investigated. This is followed by the simulations and analysis of the voltage at tower base, tower top and insulator strings. In the mean time, the relationships between difference insulation and critical flashover voltage are also investigated. The improvements made by the installation of line arrestors and the increment of critical flashover voltage of insulators are also prudently assessed. It is expected that the analysis and the strategies made by this study will pave the way to facilitate the realization of optimal overhead transmission lines.
參考文獻
[1] “輸電工程作業手冊”,台灣電力公司編。
[2] “台灣電力公司供電處96年工作年報”,台灣電力公司供電處。
[3] 張文旗, “電業服務品質與顧客滿意度探討-以台電公司南部地區特高壓用戶為例” ,中山大學企管系碩士論文,民國93年5月。
[4] “架空輸電線設計準則”,台灣電力公司,民國91年2月。
[5] 顏世雄, “避雷工程講義”,全華出版社,民國96年5月。
[6] IEEE Guide for Improving the Lightning Performance of Transmission Line, IEEE Std. 1243-1997, IEEE, 1997.
[7] A. R. Hileman, Insulation Coordination for Power System, Marcel Dekker Inc., 1999.
[8] A. Ametani and T. Kawamura, “A Method of a Lightning Surge Analysis Recommended in Japan Using EMTP”, IEEE Transactions on Power Delivery, Vol. 20, No. 2, pp.867-875, April 2005.
[9] J. M. Tobias, “The Basis of Conventional Lightning Protection Systems”, IEEE Transactions on Industry Application, Vol. 40, No. 4 , pp.958-962, July/August 2004.
[10] IEEE, “IEEE Guide for Protective Grounding of Power Lines”, IEEE Power Engineering Society, September 2003.
[11] A. C. Liew and M. Darveniza, “Lightning Performance of Unshielded Transmission Lines”, IEEE Transactions on Power Apparatus and System, Vol. PAS-101, No.6, pp. 1478-1486, June 1982.
[12] A. C. Liew and M. Darveniza, “Calculation of the Lightning Performance of Unshielded Transmission Lines”, IEEE Transactions on Power Apparatus and System, Vol. PAS-101, No.6, pp. 1471-1477, June 1982.
[13] K. Berger, R. B. Anderson and H. Kroninger, ”Parameters of the Lightning Stroke”, ELECTRA, Vol. 41, No.6, pp. 859-870, July 1987.
[14] 陳以彥, “台灣落雷資訊統計分析” ,中華民國第24屆電力研討會, 342-346頁,民國92年12月。
[15] EPRI, “Transmission Line Grounding”, EPRI Project RP 1494-1, Final Report, October 1982.
[16] F. Dawalibi and W. G. Finney, “Transmission Line Tower Grounding Performance In Non-Uniform Soil”, IEEE Transactions on Power Apparatus and System, Vol. PAS-99, No. 2, pp. 471-479, March/April 1980.
[17] F. Dawalibi, “Grounding Fault Current Distribution between Soil and Neutral Conductor”, IEEE Transactions on Power Apparatus and System, Vol. PAS-99, No. 2, pp. 452-461, March/April 1980.
[18] J. Endrenyi, “Analysis of Transmission Tower Potentials During Ground Faults”, IEEE Transactions on Power Apparatus and System, Vol. PAS-85, No. 10, pp. 1274-1283, December 1967.
[19] EPRI, “Handbook for Improving Overhead Transmission Line Lightning Performance”, December 2004.
[20] E. L. Harder and J. M. Clayton, “Transmission Line Design and Performance Based on Direct Lightning Strokes”, IEEE Transactions on Power Delivery, Vol. 68, No. 1, pp. 439-449, 1949.
[21] C. H. Shih, T. L. Jones, A. P. Litsky and L. Panek, “Application of Special Arresters on 138kV Line of Application Power Company”, IEEE Transactions on Power Apparatus and System, Vol.12, No. 2, pp. 2857-2863, October 1985.
[22] S. Furukawa, O. Usuda, T. Isozaki and Y. Trie, “Development and Application of Lightning Arresters for Transmission Lines”, IEEE Transactions on Power Delivery, Vol. 4, No. 4, pp. 2121-2129, October 1989.
[23] C. Tirado and F. de la Rosa, “Lightning Protection of Transmission Line with Surge Arresters”, CIGRE SC-33 Colloquium, Toronto, September 1997.
[24] C. F. Wanger, G. D. McCann and G.L.MacLane, “Shielding of Transmission Lines”, IEEE Transactions on Power Delivery, Vol. 60, No. 4, pp. 318-328, 1991.
[25] F. S. Young, J. M. Clayton and A. R. Hileman, “Shielding of Transmission Lines”, IEEE Transactions on Power Apparatus and System, S82, pp. 132-154, 1963.
[26] 江榮城, “訂定變電所地網故障電流計算準則及未來計畫接地故障電流成長裕度完成報告”,台灣電力公司,民國95年12月。
[27] “路北、路西~竹嶺 161kV線接管清冊” ,台電南區施工處,95年3月。
[28] M. A. Sargent and M. Darveniza, “Tower Surge Impedance”, IEEE Transactions on Power Apparatus and System, Vol. PAS-88, No. 22, pp. 680-687, May 1989.
[29] C. F. Wanger and A. R. Hileman, “A New Approach to the Calculation of the Lightning Performance of Transmission Lines, III-A Simplified Method: Stroke to Tower”, IEEE Transactions on Power Delivery, Vol.8, No. 6, pp. 589-603, October 1990.
[30] L. V. Bewley, Traveling Wave on Transmission System, 2nd, Dover Publications, New York, USA, 1963.
[31] H. H. Skilling and P. K. Dykes, “Distortion of Traveling Waves by Corona”, IEEE Transactions on Power Delivery, Vol. 73, No. 4, pp. 196-210, 1994.
校內:2058-07-04公開