簡易檢索 / 詳目顯示

研究生: 張文旗
Chang, Wen-Chyi
論文名稱: 架空輸電線路設計及其與雷擊特性之關係分析探討
Analysis and Investigation of Lightning Characteristics Influence on Overhead Transmission Lines
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 97
中文關鍵詞: 臨界閃絡電壓對地落雷密度
外文關鍵詞: GFD, CFO
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 架空輸電線路之絕緣設計涵括考量耐雷設計、耐開關突波及耐污損設計,其中在耐雷設計方面,雖已訂定接地電阻標準,但因架空輸電鐵塔分佈範圍極廣,每一地區的地質、土壤電阻係數及受雷機率嚴重程度不一,如將每一條輸電線路均以同一標準設計,似無法完全解決雷害問題,確有部分研究改進之處。
    因此本論文即致力探討現行耐雷設計所採行之對策及規範標準,並模擬測試及分析不同接地電阻對鐵塔塔基、塔頂、礙子連等電壓變化之對應關係,同時與現行設計準則所訂定之高低絕緣側臨界閃絡電壓比較,進而探討加裝線路避雷器及提高礙子連臨界閃絡電壓之相關對策,期能有助於邁向更佳化之架空輸電線路分析設計。

    In the insulation design of overhead transmission lines, it often takes the endurable capability of lightning, switching surges and unexpected pollutions scenarios into considerations. Particularly, to resist the influences brought by the lightning, the specifications for the grounding resistance have been carefully made; yet because features of geology, soil resistance coefficients and environments are different, a standard expected to be universally suitable for every overhead transmission lines becomes difficult to cope with the problem encountered, thus motivating the research made in this study.
    In this thesis, the current standards and strategies to endure the lightning is investigated. This is followed by the simulations and analysis of the voltage at tower base, tower top and insulator strings. In the mean time, the relationships between difference insulation and critical flashover voltage are also investigated. The improvements made by the installation of line arrestors and the increment of critical flashover voltage of insulators are also prudently assessed. It is expected that the analysis and the strategies made by this study will pave the way to facilitate the realization of optimal overhead transmission lines.

    目錄 中文摘要........................................................................................ I 英文摘要....................................................................................... II 誌謝............................................................................................... III 目錄................................................................................................ IV 表目錄............................................................................................ VIII 圖目錄............................................................................................ IX 符號說明....................................................................................... XV 第一章 緒論................................................................................. 1 1.1 研究背景與動機............................................................ 1 1.2 研究目的與方法............................................................. 2 1.3 內容大綱........................................................................ 3 第二章 防雷對策及目前台電之耐雷設計.................................. 5 2.1輸電線路路徑選擇......................................................... 6 2.2施設架空地線.................................................................. 6 2.2.1雷擊中輸電線路型式............................................. 6 2.2.2遮蔽角……………………….…………………… 8 2.2.3屏蔽失敗................................................................ 8 2.2.4屏蔽失敗閃絡率.................................................... 11 2.3 降低接地電阻................................................................ 13 2.4雙回線線路採差絕緣設................................................. 15 2.5裝設線路避雷器............................................................. 16 2.6雷擊閃絡型式................................................................. 16 2.6.1逆閃絡................................................................... 16 2.6.2 屏蔽失敗閃絡...................................................... 16 2.6.3感應閃絡............................................................... 17 2.6.4 跨距中央閃絡................................................ 17 2.7目前耐雷設計及採行方式.............................................. 18 2.7.1 架空地線設計...................................................... 18 2.7.2 差絕緣設計.......................................................... 19 2.7.3 接地設計.............................................................. 21 第三章 TFLASH程式介紹及線路模型建立、參數設定......... 25 3.1研究之輸電線路.............................................................. 25 3.2 架空線路設計參數........................................................ 26 3.3 接地電阻........................................................................ 26 3.4 突波阻抗........................................................................ 27 3.4.1 輸電線突波阻抗................................................. 27 3.4.2 鐵塔突波阻抗..................................................... 29 3.5 雷擊中鐵塔之電壓…………………………………… 31 3.6 雷擊突波模擬................................................................ 34 3.6.1 線路電壓與雷擊電流參數.................................. 35 3.6.2 建立鐵塔模型...................................................... 36 3.6.3 導線資料.............................................................. 38 3.6.4 礙子...................................................................... 38 3.6.5 線路避雷器......................................................... 39 第四章 模擬結果與討論.............................................................. 44 4.1模擬接地電阻為現場量測值........................................ 44 4.1.1 雷擊發生時塔基電壓變化.................................. 46 4.1.2 塔頂之電壓.......................................................... 48 4.1.3 礙子連兩端之電壓變化..................................... 52 4.1.4發生雷擊事故預測統計...................................... 55 4.2接地電阻為10Ω............................................................. 56 4.2.1 雷擊發生時塔基電壓變化.................................. 57 4.2.2 塔頂之電壓.......................................................... 60 4.2.3 礙子連兩端之電壓變化..................................... 63 4.2.4發生雷擊事故預測統計...................................... 68 4.3接地電阻為20Ω............................................................. 68 4.3.1 雷擊發生時塔基電壓變化................................. 69 4.3.2 塔頂之電壓......................................................... 72 4.3.3 礙子連兩端之電壓變化..................................... 76 4.3.4發生雷擊事故預測統計...................................... 79 4.4模擬接地電阻為20Ω且鐵塔其中一側裝設有線路避雷器................................................................................ 80 4.4.1裝設有線路避雷器側之礙子連兩端之電壓….. 81 4.4.2經線路避雷器之電流.......................................... 85 4.4.3發生雷擊事故預測統計...................................... 88 4.5 接地電阻20Ω,再加掛絕緣礙子................................. 89 4.5.1將臨界閃絡電壓值提高至1060 kV.................... 89 4.5.2將臨界閃絡電壓值提高至1237kV..................... 91 第五章 結論與未來研究方向...................................................... 93 5.1結論............................................................................... 93 5.2未來研究方向.............................................................. 94 參考文獻........................................................................................ 95 表目錄 表2.1 導線、地線、複合光纖地線(OPGW)設計標準表.......... 19 表2.2 輸電線路高、低絕緣側弧角間隙值................................ 20 表2.3 台電輸電線路耐雷設計標準............................................ 21 表2.4 大地土壤電阻係數值簡單分類........................................ 24 表3.1 接地電阻實際量測值........................................................ 27 表4.1 路北~竹嶺161kV線塔型一覽表(接地電阻為量測值) 45 表4.2 路北~竹嶺161kV線塔型一覽表(接地電阻為10Ω)....... 57 表4.3 路北~竹嶺161kV線塔型一覽表(接地電阻為20Ω)...... 69 表4.4 路北~竹嶺161kV線鐵塔接地電阻一覽表(裝設避雷器)...................................................................................... 81 圖目錄 圖2.1 雷擊中輸電線路之型式………………………………………... 7 圖2.2 遮蔽角(Shielding Angle)的定義.................................................. 8 圖2.3 兩條地線之幾何模型................................................................... 9 圖2.4 雷擊距離示意圖........................................................................... 11 圖2.5 不同Ng與臨界閃絡電流(Ic),地線高度與遮蔽角之關係圖.. 12 圖2.6 地電位升、接觸電壓及步級電壓關係示意圖........................... 14 圖2.7 不同基礎之接地設計圖............................................................... 23 圖2.8 接地網式接地電阻改善圖........................................................... 23 圖3.1 路北~竹嶺161KV線之線路引接系統及位置示意圖............... 25 圖3.2 雷突波在輸電線行進示意圖....................................................... 28 圖3.3 單一架空導體............................................................................... 29 圖3.4 鐵塔照片實例............................................................................... 29 圖3.5 161/161kV鐵塔簡化模型............................................................ 30 圖3.6 雷擊中鐵塔................................................................................... 31 圖3.7 雷擊中鐵塔格狀圖....................................................................... 32 圖3.8 塔頂電壓....................................................................................... 33 圖3.9 功能方塊圖................................................................................... 35 圖3.10 161/161kV鐵塔地線及各導線掛線點編號................................ 36 圖3.11 #1 4JP(26.5m)鐵塔之輸入資料.................................................... 37 圖3.12 #2 4B2鐵塔之輸入資料............................................................... 37 圖3.13 導地線之輸入資料....................................................................... 38 圖3.14 低絕緣側礙子連臨界閃絡電壓設定........................................... 39 圖3.15 高絕緣側礙子連臨界閃絡電壓設定........................................... 39 圖3.16 避雷器基本構造圖....................................................................... 40 圖3.17 線路避雷器外觀圖....................................................................... 41 圖3.18 線路避雷器動作原理................................................................... 42 圖3.19 未裝置線路避雷器,雷擊過電壓與臨界閃絡電壓之關係....... 43 圖3.20 線路避雷器建立資料................................................................... 43 圖4.1 雷擊電流波形(40kA 1.2/50μs)..................................................... 45 圖4.2 雷擊突波發生於#1鐵塔時,塔基電壓之變化(接地電阻為 量測值).......................................................................................... 46 圖4.3 雷擊突波發生於#4鐵塔時,塔基電壓之變化(接地電阻為量測值).............................................................................................. 47 圖4.4 雷擊突波發生於#9鐵塔時,塔基電壓之變化(接地電阻為 量測值)......................................................................................... 47 圖4.5 雷擊突波發生於#13鐵塔時,塔基電壓之變化(接地電阻 為量測值)...................................................................................... 48 圖4.6 雷擊突波發生於#18鐵塔時,塔基電壓之變化(接地電阻 為量測值)...................................................................................... 48 圖4.7 雷擊突波發生於#1鐵塔時,塔頂電壓之變化(接地電阻為 量測值).......................................................................................... 49 圖4.8 雷擊突波發生於#4鐵塔時,塔頂電壓之變化(接地電阻為 量測值).......................................................................................... 50 圖4.9 雷擊突波發生於#9鐵塔時,塔頂電壓之變化(接地電阻為 量測值).......................................................................................... 50 圖4.10 雷擊突波發生於#13鐵塔時,塔頂電壓之變化(接地電阻為量測值).............................................................................................. 51 圖4.11 雷擊突波發生於#18鐵塔時,塔頂電壓之變化(接地電阻為量測值).............................................................................................. 51 圖4.12 雷擊突波發生於#1鐵塔時,礙子連電壓之變化(接地電阻為量測值).......................................................................................... 52 圖4.13 雷擊突波發生於#4鐵塔時,礙子連電壓之變化(接地電阻為量測值).......................................................................................... 53 圖4.14 雷擊突波發生於#9鐵塔時,礙子連電壓之變化(接地電阻為量測值).......................................................................................... 53 圖4.15 雷擊突波發生於#13鐵塔時,礙子連電壓之變化(接地電阻為量測值).......................................................................................... 54 圖4.16 雷擊突波發生於#18鐵塔時,礙子連電壓之變化(接地電阻為量測值).......................................................................................... 54 圖4.17 #1~#18號鐵塔,因雷擊發生之閃絡件數(接地電阻為量測值).................................................................................................. 55 圖4.18 雷擊突波發生於#1鐵塔時,塔基電壓之變化.......................... 58 圖4.19 雷擊突波發生於#4鐵塔時,塔基電壓之變化........................... 58 圖4.20 雷擊突波發生於#9鐵塔時,塔基電壓之變化........................... 59 圖4.21 雷擊突波發生於#13鐵塔時,塔基電壓之變化......................... 59 圖4.22 雷擊突波發生於#18鐵塔時,塔基電壓之變化......................... 60 圖4.23 雷擊突波發生於#1鐵塔時,塔頂電壓之變化........................... 61 圖4.24 雷擊突波發生於#4鐵塔時,塔頂電壓之變化.......................... 61 圖4.25 雷擊突波發生於#9鐵塔時,塔頂電壓之變化........................... 62 圖4.26 雷擊突波發生於#13鐵塔時,塔頂電壓之變化........................ 62 圖4.27 雷擊突波發生於#18鐵塔時,塔頂電壓之變化........................... 63 圖4.28 雷擊突波發生於#1鐵塔時,礙子連電壓之變化...................... 64 圖4.29 雷擊突波發生於#4鐵塔時,礙子連電壓之變化...................... 65 圖4.30 雷擊突波發生於#9鐵塔時,礙子連電壓之變化...................... 65 圖4.31 雷擊突波發生於#13鐵塔時,礙子連電壓之變化.................... 66 圖4.32 雷擊突波發生於#18鐵塔時,礙子連電壓之變化.................... 66 圖4.33 雷擊突波(40kA 5/50μs)發生於#1鐵塔時,礙子連電壓之變化 67 圖4.34 雷擊突波(40kA 10/50μs)發生於#1鐵塔時,礙子連電壓之變化………………………………………………………………… 67 圖4.35 #1~#18號鐵塔,因雷擊發生之閃絡件數.................................. 68 圖4.36 雷擊突波發生於#1鐵塔時,塔基電壓之變化.......................... 70 圖4.37 雷擊突波發生於#4鐵塔時,塔基電壓之變化.......................... 70 圖4.38 雷擊突波發生於#9鐵塔時,塔基電壓之變化.......................... 71 圖4.39 雷擊突波發生於#13鐵塔時,塔基電壓之變化......................... 71 圖4.40 雷擊突波發生於#18鐵塔時,塔基電壓之變化........................ 72 圖4.41 雷擊突波發生於#1鐵塔時,塔頂電壓之變化.......................... 73 圖4.42 雷擊突波發生於#4鐵塔時,塔頂電壓之變化.......................... 73 圖4.43 雷擊突波發生於#9鐵塔時,塔頂電壓之變化.......................... 74 圖4.44 雷擊突波發生於#13鐵塔時,塔頂電壓之變化........................ 74 圖4.45 雷擊突波發生於#18鐵塔時,塔頂電壓之變化......................... 75 圖4.46 雷擊突波(40kA 5/50μs)發生於#1鐵塔時,塔頂電壓之變化... 75 圖4.47 雷擊突波(40kA 10/50μs)發生於#1鐵塔時,塔頂電壓之變化. 76 圖4.48 雷擊突波發生於#1鐵塔時,礙子連電壓之變化....................... 77 圖4.49 雷擊突波發生於#4鐵塔時,礙子連電壓之變化...................... 77 圖4.50 雷擊突波發生於#9鐵塔時,礙子連電壓之變化........................ 78 圖4.51 雷擊突波發生於#13鐵塔時,礙子連電壓之變化..................... 78 圖4.52 雷擊突波發生於#18鐵塔時,礙子連電壓之變化..................... 79 圖4.53 #1~#18號鐵塔,因雷擊發生之閃絡件數.................................. 80 圖4.54 線路避雷器設定參數................................................................... 82 圖4.55 鐵塔之其中一側裝設線路避雷器,當雷擊突波發生於#1鐵塔之礙子連電壓變化....................................................................... 83 圖4.56 鐵塔之其中一側裝設線路避雷器,當雷擊突波發生於#4鐵塔之礙子連電壓變化....................................................................... 83 圖4.57 鐵塔之其中一側裝設線路避雷器,當雷擊突波發生於#9鐵塔之礙子連電壓變化....................................................................... 84 圖4.58 鐵塔之其中一側裝設線路避雷器,當雷擊突波發生於#13鐵塔之礙子連電壓變化................................................................... 84 圖4.59 鐵塔之其中一側裝設線路避雷器,當雷擊突波發生於#18鐵塔之礙子連電壓變化................................................................... 85 圖4.60 雷擊突波發生於#1鐵塔,流經1號橫擔之避雷器電流.......... 86 圖4.61 雷擊突波發生於#4鐵塔,流經1號橫擔之避雷器電流........... 86 圖4.62 雷擊突波發生於#9鐵塔,流經1號橫擔之避雷器電流........... 87 圖4.63 雷擊突波發生於#13鐵塔,流經1號橫擔之避雷器電流........ 87 圖4.64 雷擊突波發生於#18鐵塔,流經1號橫擔之避雷器電流........ 88 圖4.65 #1~#18號鐵塔,因雷擊發生之閃絡件數.................................. 89 圖4.66 146mmx255mm標準礙子外觀.................................................... 90 圖4.67 #1~#18號鐵塔,因雷擊發生之閃絡件數(將臨界閃絡電壓提高至1060kV)................................................................................ 91 圖4.68 #1~#18號鐵塔,因雷擊發生之閃絡件數(將臨界閃絡電壓提高至1237kV)................................................................................ 92

    參考文獻

    [1] “輸電工程作業手冊”,台灣電力公司編。

    [2] “台灣電力公司供電處96年工作年報”,台灣電力公司供電處。

    [3] 張文旗, “電業服務品質與顧客滿意度探討-以台電公司南部地區特高壓用戶為例” ,中山大學企管系碩士論文,民國93年5月。

    [4] “架空輸電線設計準則”,台灣電力公司,民國91年2月。

    [5] 顏世雄, “避雷工程講義”,全華出版社,民國96年5月。

    [6] IEEE Guide for Improving the Lightning Performance of Transmission Line, IEEE Std. 1243-1997, IEEE, 1997.

    [7] A. R. Hileman, Insulation Coordination for Power System, Marcel Dekker Inc., 1999.

    [8] A. Ametani and T. Kawamura, “A Method of a Lightning Surge Analysis Recommended in Japan Using EMTP”, IEEE Transactions on Power Delivery, Vol. 20, No. 2, pp.867-875, April 2005.

    [9] J. M. Tobias, “The Basis of Conventional Lightning Protection Systems”, IEEE Transactions on Industry Application, Vol. 40, No. 4 , pp.958-962, July/August 2004.

    [10] IEEE, “IEEE Guide for Protective Grounding of Power Lines”, IEEE Power Engineering Society, September 2003.

    [11] A. C. Liew and M. Darveniza, “Lightning Performance of Unshielded Transmission Lines”, IEEE Transactions on Power Apparatus and System, Vol. PAS-101, No.6, pp. 1478-1486, June 1982.

    [12] A. C. Liew and M. Darveniza, “Calculation of the Lightning Performance of Unshielded Transmission Lines”, IEEE Transactions on Power Apparatus and System, Vol. PAS-101, No.6, pp. 1471-1477, June 1982.

    [13] K. Berger, R. B. Anderson and H. Kroninger, ”Parameters of the Lightning Stroke”, ELECTRA, Vol. 41, No.6, pp. 859-870, July 1987.

    [14] 陳以彥, “台灣落雷資訊統計分析” ,中華民國第24屆電力研討會, 342-346頁,民國92年12月。

    [15] EPRI, “Transmission Line Grounding”, EPRI Project RP 1494-1, Final Report, October 1982.

    [16] F. Dawalibi and W. G. Finney, “Transmission Line Tower Grounding Performance In Non-Uniform Soil”, IEEE Transactions on Power Apparatus and System, Vol. PAS-99, No. 2, pp. 471-479, March/April 1980.

    [17] F. Dawalibi, “Grounding Fault Current Distribution between Soil and Neutral Conductor”, IEEE Transactions on Power Apparatus and System, Vol. PAS-99, No. 2, pp. 452-461, March/April 1980.

    [18] J. Endrenyi, “Analysis of Transmission Tower Potentials During Ground Faults”, IEEE Transactions on Power Apparatus and System, Vol. PAS-85, No. 10, pp. 1274-1283, December 1967.

    [19] EPRI, “Handbook for Improving Overhead Transmission Line Lightning Performance”, December 2004.

    [20] E. L. Harder and J. M. Clayton, “Transmission Line Design and Performance Based on Direct Lightning Strokes”, IEEE Transactions on Power Delivery, Vol. 68, No. 1, pp. 439-449, 1949.

    [21] C. H. Shih, T. L. Jones, A. P. Litsky and L. Panek, “Application of Special Arresters on 138kV Line of Application Power Company”, IEEE Transactions on Power Apparatus and System, Vol.12, No. 2, pp. 2857-2863, October 1985.

    [22] S. Furukawa, O. Usuda, T. Isozaki and Y. Trie, “Development and Application of Lightning Arresters for Transmission Lines”, IEEE Transactions on Power Delivery, Vol. 4, No. 4, pp. 2121-2129, October 1989.

    [23] C. Tirado and F. de la Rosa, “Lightning Protection of Transmission Line with Surge Arresters”, CIGRE SC-33 Colloquium, Toronto, September 1997.

    [24] C. F. Wanger, G. D. McCann and G.L.MacLane, “Shielding of Transmission Lines”, IEEE Transactions on Power Delivery, Vol. 60, No. 4, pp. 318-328, 1991.

    [25] F. S. Young, J. M. Clayton and A. R. Hileman, “Shielding of Transmission Lines”, IEEE Transactions on Power Apparatus and System, S82, pp. 132-154, 1963.

    [26] 江榮城, “訂定變電所地網故障電流計算準則及未來計畫接地故障電流成長裕度完成報告”,台灣電力公司,民國95年12月。

    [27] “路北、路西~竹嶺 161kV線接管清冊” ,台電南區施工處,95年3月。

    [28] M. A. Sargent and M. Darveniza, “Tower Surge Impedance”, IEEE Transactions on Power Apparatus and System, Vol. PAS-88, No. 22, pp. 680-687, May 1989.

    [29] C. F. Wanger and A. R. Hileman, “A New Approach to the Calculation of the Lightning Performance of Transmission Lines, III-A Simplified Method: Stroke to Tower”, IEEE Transactions on Power Delivery, Vol.8, No. 6, pp. 589-603, October 1990.

    [30] L. V. Bewley, Traveling Wave on Transmission System, 2nd, Dover Publications, New York, USA, 1963.

    [31] H. H. Skilling and P. K. Dykes, “Distortion of Traveling Waves by Corona”, IEEE Transactions on Power Delivery, Vol. 73, No. 4, pp. 196-210, 1994.

    無法下載圖示 校內:2058-07-04公開
    校外:2058-07-04公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE