簡易檢索 / 詳目顯示

研究生: 涂惠菁
Tu, Huei-Jing
論文名稱: 探討EV71感染巨噬細胞之決定因子
Molecular determinants of enterovirus 71 for macrophage infection
指導教授: 王貞仁
Wang, Jen-Ren
謝奇璋
Shieh, Chi-Chang
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 89
中文關鍵詞: 巨噬細胞腸病毒71型
外文關鍵詞: macrophage, EV71
相關次數: 點閱:107下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腸病毒71型主要造成手足口症,也會導致嚴重神經性症狀,然而現今對於腸病毒71型如何侵犯中樞神經仍然未知,小兒麻痺病毒文獻指出小兒麻痺病毒可以感染人類單核球細胞,認為小兒麻痺病毒可經由血液細胞進入中樞神經系統,另有文獻指出巨噬細胞吞噬口蹄疫病毒後也許會轉變為具感染性攜帶者,幫助口蹄疫病毒感染及複製至其他細胞,因此巨噬細胞也許在腸病毒感染內扮演重要角色。在本研究發現兩株腸病毒71型病毒株4643-S及4643-R,在周邊血液單核球感染4643-R後產生腫瘤壞死因子α之量比感染4643-S高,此外對phorbol myristate acetate (PMA)刺激後之THP1細胞的感受性亦不同,利用腸病毒71型吸附試驗則發現4643-S及4643-R對於PMA刺激後THP1細胞膜蛋白黏附能力不同,而且從序列分析知道這兩株病毒分別在VP1、VP3、2C及3A基因序列不同。進一步利用感染性克隆系統研究巨噬細胞對於腸病毒71型感受性之病毒決定因子,分別建構4643-S、4643-R及結構性蛋白為4643-R之S-R-S、結構性蛋白為4643-S之R-S-R的感染性克隆,接著利用以上重組病毒感染單核細胞源巨噬細胞,結果發現腸病毒71型殼體蛋白(capsid)影響腸病毒71型對單核細胞源巨噬細胞的感受性。另外,利用點突變技術建構出VP1 K98E、E145Q及S241L突變之感染性克隆,再用以上突變病毒感染單核細胞源巨噬細胞,結果顯示上述三個單點突變並不影響腸病毒71型感染巨噬細胞,在結構蛋白可能有其他胺基酸變異影響,或者需要多個胺基酸突變後才能影響腸病毒71型感染巨噬細胞。本研究結果顯示腸病毒71型之殼體蛋白在對單核細胞源巨噬細胞之感受性扮演重要之角色,此結果幫助瞭解腸病毒71型感染巨噬細胞分子性決定因子。

    Enterovirus 71 (EV71) is a major etiological agent of hand-foot-and-mouth disease (HFMD) which can lead to severe neurological complications. However, the mechanisms of EV71 gain access to and invade the central nervous system (CNS) are poorly understood. Previous reports showed poliovirus can productively infect primary human monocytes and suggested poliovirus entry into the CNS via blood. Another study indicated that phagocytosis of foot-and-mouth disease virus (FMDV) by macrophage may create infectious carriers to facilitate FMDV infection and replication in cells. Hence, macrophage may play an important role in the pathogenesis of enterovirus infection. In our study, we found two EV71 strains 4643-S & 4643-R, which were derived from an EV71 isolate from a fatal case, with different susceptibility for PMA-treated THP1 cells by using infectious center assay. In addition, 4643-R produced higher tumor necrosis factor-α (TNF-α) in infected peripheral blood mononuclear cell (PBMC) than 4643-S. EV71 adsorption assay revealed different binding ability of 4643-S & 4643-R to PMA-treated THP1 cell membrane proteins. Moreover, sequence analysis of these two strains revealed several variations in VP1, VP3, 2C and 3A gene regions. Furthermore, the genetic determinants of EV71 susceptibility for macrophages was investigated by using EV71 infectious clone system. Four infectious clones carried viral 4643-S & 4643-R genome, and S-R-S & R-S-R genes which exchanged the structure genes between 4643-S and 4643-R were established. Monocyte-derived macrophage infected with above recombinant viruses demonstrated that EV71 capsid protein influenced susceptibility of monocyte-derived macrophage for EV71. K98E, E145Q and S241L of VP1 mutant infectious clones were then constructed by site-directed mutagenesis. Monocyte-derived macrophage infected with above mutant viruses showed that those single mutations did not affect EV71 infection to macrophage. Our results indicated sapsid proteins of EV71 played an important role in infection of monocyte-derived macrophage. This study helps in understanding the molecular mechanism of EV71 infection in macrophage.

    目錄 中文摘要……………………………………………………………..………Ι 英文摘要…………………………………………………….………………Ⅲ 致謝………………………………………………………………………….Ⅴ 目錄……………………………………………………….…………………Ⅵ 表目錄…………………………………………………….…………………Ⅷ 圖目錄……………………………………………………….………………Ⅷ 第一章、緒論 一、 腸病毒71型基本特性…………………………………………………1 二、 腸病毒臨床病徵及流行病學…………………….……………………4 三、 腸病毒感染途徑之研究………………………….……………………6 四、 腸病毒感染單核球細胞………………………….……………………9 五、 不同腸病毒之病毒株在單核球的表現…………..………………….11 六、 感染性克隆(infectious clone)系統……………...……………………12 七、 研究目標………………………………………...……………………14 第二章、材料與方法 一、 細胞與病毒……………………………………...……………………15 二、 感染率溶斑試驗 (Infectious Center Assay).........................................20 三、 病毒對細胞膜蛋白附著試驗...............................................................21 四、 病毒感染PBMC產生腫瘤壞死因子α (TNF-α).................................23 五、 感染性克隆(infectious clone)建構.......................................................25 六、 重組感染性克隆(Chimeric infectious clone)建構…………………...31 七、 點突變感染性克隆建構……………………………………………...32 第三章、結果 一、比較臨床分離病毒株4643-S及4643-R感染單核球細胞株及單核細胞源巨噬細胞之生物特性………………………………….………………35 1. 單核球及從單核細胞源巨噬細胞對腸病毒71型感受性分析………...35 2. 病毒黏附細胞膜蛋白能力分析…………………………………………36 二、分析腸病毒71型4643-S、4634-R感染性克隆生物特性……………37 1. 建構4643-S及4643-R感染性克隆……………………………………..38 2. 單核細胞源巨噬細胞對感染性克隆病毒感受性分析…………………39 3. 腸病毒71型4643-S及4643-R全長定序及比對………………………39 三、腸病毒71型結構蛋白對病毒感染巨噬細胞之影響……………….…40 1. 建構chimeric感染性克隆……………………………………………….41 2. 結構蛋白影響單核細胞源巨噬細胞對於病毒感受性…………………41 四、突變病毒感染巨噬細胞之生物特性分析……………………………...42 1. 突變感染性克隆建構……………………………………………………42 2. 單核細胞源巨噬細胞對於突變病毒之感受性…………………………43 第四章、討論 1. 單核球分化(巨噬細胞)與腸病毒感染之間關係………………….……44 2. 腸病毒capsid蛋白功能探討………………………………………..…..46 3. 針對4643-S及4643-R點突變位置功能性探討………………………..48 4. 腫瘤壞死因子α (TNF-α)在腸病毒感染中扮演角色…………...………50 5. 巨噬細胞攜帶腸病毒為傳播媒介探討………...……………………….52 6. 結語………………………………...…………………………………….53 參考資料…………………………………………………………………….54 圖表………………………………………………………………………….62 附錄………………………………………………………………………….82 自述……………………………………………………………………….…89 表目錄 表一、腸病毒71型全長定序用引子(primer)………………………………62 表二、4643-S及4643-R全長序列比對……………………………………..63 表三、腸病毒71型感染性克隆定點突變用引子…………………………..64 圖目錄 圖一、4643-S及4643-R感染周邊血液單核球細胞誘發TNF-α…………..65 圖二、藉由infectious center assay分析promonocytic cells 及 monocyte-derived macrphage對於 4643-S及4643-R之感受性…………..66 圖三、分析4643-S及4643-R黏附至不同細胞株膜蛋白的能力…………67 圖四、腸病毒71型4643-S及4643-R感染性克隆建構示意圖…………..68 圖五、利用RT-PCR的方式放大4643-S及4643-R full length sequence….69 圖六、4643-S及4643-R感染性克隆經過限制酶切割linearization……….70 圖七、4643-S及4643-R感染性克隆經in vitro transcription所得之RNA...71 圖八、RD細胞經4643-S及4643-R感染性克隆RNA轉染或病毒感染..…72 圖九、以infectious center assay分析PMA-treated THP1細胞對於 4643-S及4643-R感染性克隆之感受性…………………………………...……….73 圖十、建構chimeric感染性克隆示意圖…………………………….….….74 圖十一、RD細胞經Chimeric感染性克隆RNA轉染或病毒感染…………75 圖十二、藉由infectious center assay分析PMA-treated THP1細胞對於chimeric病毒感受性………………………………………………………...76 圖十三、突變感染性克隆建構流程及突變位置示意圖…………………...77 圖十四、RD細胞經突變感染性克隆RNA轉染及病毒感染………….….78 圖十五、以infectious center assay分析PMA-treated THP1細胞對於突變感染性克隆病毒之感受性……………………………………...…………..79 圖十六、以(PS)2軟體預測之4643-S及4643-R之VP1蛋白立體結構..…80 圖十七、以(PS)2軟體預測之4643-S及4643-R之VP3蛋白立體結構…..81

    1. Aminev, A. G., S. P. Amineva, and A. C. Palmenberg. 2003. Encephalomyocarditis viral protein 2A localizes to nucleoli and inhibits cap-dependent mRNA translation. Virus Research 95:45-57.
    2. Andino, R., G. E. Rieckhof, and D. Baltimore. 1990. A functional ribonucleoprotein complex forms around the 5' end of poliovirus RNA. Cell 63:369-380.
    3. Barco, A., E. Feduchi, and L. Carrasco. 2000. Poliovirus protease 3C(pro) kills cells by apoptosis. Virology 266:352-360.
    4. Basta, S., S. M. Knoetig, M. Spagnuolo-Weaver, G. Allan, and K. C. McCullough. 1999. Modulation of monocytic cell activity and virus susceptibility during differentiation into macrophages. Journal of Immunology 162:3961-3969.
    5. Belnap, D. M., B. M. McDermott, D. J. Filman, N. Q. Cheng, B. L. Trus, H. J. Zuccola, V. R. Racaniello, J. M. Hogle, and A. C. Steven. 2000. Three-dimensional structure of poliovirus receptor bound to poliovirus. Proceedings of the National Academy of Sciences of the United States of America 97:73-78.
    6. Benveniste, E. N. 1992. Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action. Am J Physiol Cell Physiol 263:C1-16.
    7. Bienz, K., D. Egger, M. Troxler, and L. Pasamontes. 1990. Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region. J. Virol. 64:1156-1163.
    8. Bouchard, M. J., D. H. Lam, and V. R. Racaniello. 1995. Determinants of attenuation and temperature sensitivity in the type 1 poliovirus Sabin vaccine. J Virol 69:4972-8.
    9. Bruun, T., A. K. Kristoffersen, H. Rollag, and M. Degre. 1998. Interaction of herpes simplex virus with mononuclear phagocytes is dependent on the differentiation stage of the cells. Apmis 106:305-314.
    10. Bubeck, D., D. J. Filman, N. Cheng, A. C. Steven, J. M. Hogle, and D. M. Belnap. 2005. The structure of the poliovirus 135S cell entry intermediate at 10-angstrom resolution reveals the location of an externalized polypeptide that binds to membranes. J Virol 79:7745-55.
    11. Buisman, A. M., J. A. J. Sonsma, M. G. S. van Wijk, J. P. Vermeulen, P. J. Roholl, and T. G. Kimman. 2003. Pathogenesis of poliovirus infection in PVRTg mice: poliovirus replicates in peritoneal macrophages. J Gen Virol 84:2819-2828.
    12. Caggana, M., P. Chan, and A. Ramsingh. 1993. Identification of a single amino acid residue in the capsid protein VP1 of coxsackievirus B4 that determines the virulent phenotype. J Virol 67:4797-803.
    13. Calabrese, F., E. Carturan, C. Chimenti, M. Pieroni, C. Agostini, A. Angelini, M. Crosato, M. Valente, G. M. Boffa, A. Frustaci, and G. Thiene. 2004. Overexpression of tumor necrosis factor (TNF)alpha and TNFalpha receptor I in human viral myocarditis: clinicopathologic correlations. Mod Pathol 17:1108-18.
    14. Chang, L. Y., C. A. Hsiung, C. Y. Lu, T. Y. Lin, F. Y. Huang, Y. H. Lai, Y. P. Chiang, B. L. Chiang, C. Y. Lee, and L. M. Huang. 2006. Status of cellular rather than humoral immunity is correlated with clinical outcome of enterovirus 71. Pediatr Res 60:466-71.
    15. Colston, E., and V. R. Racaniello. 1994. Soluble Receptor-Resistant Poliovirus Mutants Identify Surface and Internal Capsid Residues That Control Interaction with the Cell-Receptor. Embo Journal 13:5855-5862.
    16. Colston, E. M., and V. R. Racaniello. 1995. Poliovirus variants selected on mutant receptor-expressing cells identify capsid residues that expand receptor recognition. J Virol 69:4823-9.
    17. Dan, M., and J. K. Chantler. 2005. A genetically engineered attenuated coxsackievirus B3 strain protects mice against lethal infection. J Virol 79:9285-95.
    18. Dasgupta, A. Y., Padmaja; Clark, Melody; Kliewer, Steven; Fradkin, Lee; Rubinstein, Sheryl; Das, Saumitra; Shen, Yuhong; Weidman, Mary K.; Banerjee, Rajeev; Datta, Utpal; Igo, Megan; Kundu, Pallob; Barat, Bhaswati; Berk, Arnold J. . 2002. Effects of picornavirus proteinases on host cell transcription Molecular Biology of Picornaviruses 321-335.
    19. Deitz, S. B., D. A. Dodd, S. Cooper, P. Parham, and K. Kirkegaard. 2000. MHC I-dependent antigen presentation is inhibited by poliovirus protein 3A. PNAS 97:13790-13795.
    20. Djeu, J. Y., D. K. Blanchard, A. L. Richards, and H. Friedman. 1988. Tumor necrosis factor induction by Candida albicans from human natural killer cells and monocytes. J Immunol 141:4047-52.
    21. Doedens, J. R., and K. Kirkegaard. 1995. Inhibition of Cellular Protein Secretion by Poliovirus Proteins 2b and 3a. Embo Journal 14:894-907.
    22. Dutta, S. K., and A. C. Myrup. 1983. Infectious center assay of intracellular virus and infective virus titer for equine mononuclear cells infected in vivo and in vitro with equine herpesviruses. Can J Comp Med 47:64-9.
    23. Elghonemy, S., W. G. Davis, and M. A. Brinton. 2005. The majority of the nucleotides in the top loop of the genomic 3' terminal stem loop structure are cis-acting in a West Nile virus infectious clone. Virology 331:238-246.
    24. Evans, D. J., and J. W. Almond. 1998. Cell receptors for picornaviruses as determinants of cell tropism and pathogenesis. Trends in Microbiology 6:198-202.
    25. Foo, D. G. W., S. Alonso, M. C. Phoon, N. P. Ramachandran, V. T. K. Chow, and C. L. Poh. 2007. Identification of neutralizing linear epitopes from the VP1 capsid protein of Enterovirus 71 using synthetic peptides. Virus Research 125:61-68.
    26. Freistadt, M. S., and K. E. Eberle. 1996. Correlation between poliovirus type 1 Mahoney replication in blood cells and neurovirulence. J. Virol. 70:6486-6492.
    27. Goldstaub, D., A. Gradi, Z. Bercovitch, Z. Grosmann, Y. Nophar, S. Luria, N. Sonenberg, and C. Kahana. 2000. Poliovirus 2A Protease Induces Apoptotic Cell Death. Mol. Cell. Biol. 20:1271-1277.
    28. Harvala, H., H. Kalimo, J. Bergelson, G. Stanway, and T. Hyypia. 2005. Tissue tropism of recombinant coxsackieviruses in an adult mouse model. J Gen Virol 86:1897-1907.
    29. Harvala, H., H. Kalimo, L. Dahllund, J. Santti, P. Hughes, T. Hyypia, and G. Stanway. 2002. Mapping of tissue tropism determinants in coxsackievirus genomes. J Gen Virol 83:1697-706.
    30. Hellen, C. U., and P. Sarnow. 2001. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15:1593-612.
    31. Henke, A., C. Mohr, H. Sprenger, C. Graebner, A. Stelzner, M. Nain, and D. Gemsa. 1992. Coxsackievirus B3-induced production of tumor necrosis factor-alpha, IL- 1 beta, and IL-6 in human monocytes. J Immunol 148:2270-2277.
    32. Herbein, G., and W. A. O'Brien. 2000. Tumor Necrosis Factor (TNF)-{alpha} and TNF Receptors in Viral Pathogenesis. Proc Soc Exp Biol Med 223:241-257.
    33. Ho, M., E. R. Chen, K. H. Hsu, S. J. Twu, K. T. Chen, S. F. Tsai, J. R. Wang, and S. R. Shih. 1999. An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N Engl J Med 341:929-35.
    34. Hogle, J. M. 2002. Poliovirus cell entry: common structural themes in viral cell entry pathways. Annu Rev Microbiol 56:677-702.
    35. Hogle, J. M., M. Chow, and D. J. Filman. 1985. Three-dimensional structure of poliovirus at 2.9 A resolution. Science 229:1358-1365.
    36. Huber, S. A., and D. Sartini. 2005. Roles of tumor necrosis factor alpha (TNF-alpha) and the p55 TNF receptor in CD1d induction and coxsackievirus B3-induced myocarditis. J Virol 79:2659-65.
    37. Hyypia, T., T. Hovi, N. J. Knowles, and G. Stanway. 1997. Classification of enteroviruses based on molecular and biological properties. J Gen Virol 78:1-11.
    38. Ibanez, C. E., R. Schrier, P. Ghazal, C. Wiley, and J. A. Nelson. 1991. HUMAN CYTOMEGALOVIRUS PRODUCTIVELY INFECTS PRIMARY DIFFERENTIATED MACROPHAGES. Journal of Virology 65:6581-6588.
    39. Ikeda, M., M. Yi, K. Li, and S. M. Lemon. 2002. Selectable Subgenomic and Genome-Length Dicistronic RNAs Derived from an Infectious Molecular Clone of the HCV-N Strain of Hepatitis C Virus Replicate Efficiently in Cultured Huh7 Cells. J. Virol. 76:2997-3006.
    40. Jelachich, M. L., C. Bramlage, and H. L. Lipton. 1999. Differentiation of M1 Myeloid Precursor Cells into Macrophages Results in Binding and Infection by Theiler's Murine Encephalomyelitis Virus and Apoptosis. J. Virol. 73:3227-3235.
    41. Jelachich, M. L., H. V. Reddi, M. D. Trottier, B. P. Schlitt, and H. L. Lipton. 2004. Susceptibility of peritoneal macrophages to infection by Theiler's virus. Virus Research 104:123-127.
    42. Kang, Y., N. K. Chatterjee, M. J. Nodwell, and J. W. Yoon. 1994. Complete Nucleotide-Sequence of a Strain of Coxsackie B4 Virus of Human-Origin That Induces Diabetes in Mice and Its Comparison with Nondiabetogenic Coxsackie B4 Jbv Strain. Journal of Medical Virology 44:353-361.
    43. Ke, Y. Y., Y. C. Chen, and T. H. Lin. 2006. Structure of the virus capsid protein VP1 of enterovirus 71 predicted by some homology modeling and molecular docking studies. J Comput Chem 27:1556-70.
    44. Kim, M. S., and V. R. Racaniello. 2007. Enterovirus 70 receptor utilization is controlled by capsid residues that also regulate host range and cytopathogenicity. J. Virol.:JVI.01569-06.
    45. Kohro, T., T. Tanaka, T. Murakami, Y. Wada, H. Aburatani, T. Hamakubo, and T. Kodama. 2004. A comparison of differences in the gene expression profiles of phorbol 12-myristate 13-acetate differentiated THP-1 cells and human monocyte-derived macrophage. J Atheroscler Thromb 11:88-97.
    46. Krah, D. L., and R. L. Crowell. 1982. A solid-phase assay of solubilized HeLa cell membrane receptors for binding group B coxsackieviruses and polioviruses. Virology 118:148-156.
    47. Kung, C. M., C. C. King, C. N. Lee, L. M. Huang, P. I. Lee, and C. L. Kao. 2007. Differences in replication capacity between enterovirus 71 isolates obtained from patients with encephalitis and those obtained from patients with herpangina in Taiwan. J Med Virol 79:60-8.
    48. Lane, J. R., D. A. Neumann, A. Lafond-Walker, A. Herskowitz, and N. R. Rose. 1993. Role of IL-1 and tumor necrosis factor in coxsackie virus-induced autoimmune myocarditis. J Immunol 151:1682-90.
    49. Leon-Monzon, M. E., I. Illa, and M. C. Dalakas. 1995. Expression of Poliovirus Receptor in Human Spinal Cord and Muscle. Annals of the New York Academy of Sciences 753:48-57.
    50. Li, C., H. Wang, S. R. Shih, T. C. Chen, and M. L. Li. 2007. The efficacy of viral capsid inhibitors in human enterovirus infection and associated diseases. Curr Med Chem 14:847-56.
    51. Lin, T. Y., L. Y. Chang, Y. C. Huang, K. H. Hsu, C. H. Chiu, and K. D. Yang. 2002. Different proinflammatory reactions in fatal and non-fatal enterovirus 71 infections: implications for early recognition and therapy. Acta Paediatrica 91:632-635.
    52. Lin, T. Y., S. H. Hsia, Y. C. Huang, C. T. Wu, and L. Y. Chang. 2003. Proinflammatory cytokine reactions in enterovirus 71 infections of the central nervous system. Clinical Infectious Diseases 36:269-274.
    53. Lipton, H. L., A. S. Kumar, and M. Trottier. 2005. Theiler's virus persistence in the central nervous system of mice is associated with continuous viral replication and a difference in outcome of infection of infiltrating macrophages versus oligodendrocytes. Virus Res 111:214-23.
    54. Macadam, A. J., S. R. Pollard, G. Ferguson, R. Skuce, D. Wood, J. W. Almond, and P. D. Minor. 1993. Genetic basis of attenuation of the Sabin type 2 vaccine strain of poliovirus in primates. Virology 192:18-26.
    55. Martin, A., C. Wychowski, T. Couderc, R. Crainic, J. Hogle, and M. Girard. 1988. Engineering a poliovirus type 2 antigenic site on a type 1 capsid results in a chimaeric virus which is neurovirulent for mice. Embo J 7:2839-47.
    56. Mellits, K. H., J. M. Meredith, J. B. Rohll, D. J. Evans, and J. W. Almond. 1998. Binding of a cellular factor to the 3' untranslated region of the RNA genomes of entero- and rhinoviruses plays a role in virus replication. J Gen Virol 79:1715-1723.
    57. Mena, I., J.-P. Roussarie, and M. Brahic. 2004. Infection of Macrophage Primary Cultures by Persistent and Nonpersistent Strains of Theiler's Virus: Role of Capsid and Noncapsid Viral Determinants. J. Virol. 78:13356-13361.
    58. Mirmomeni, M. H., P. J. Hughes, and G. Stanway. 1997. An RNA tertiary structure in the 3' untranslated region of enteroviruses is necessary for efficient replication. J. Virol. 71:2363-2370.
    59. Muckelbauer, J. K., and M. G. Rossmann. 1997. The structure of coxsackievirus B3. Curr Top Microbiol Immunol 223:191-208.
    60. Mueller, S., X. Cao, R. Welker, and E. Wimmer. 2002. Interaction of the Poliovirus Receptor CD155 with the Dynein Light Chain Tctex-1 and Its Implication for Poliovirus Pathogenesis. J. Biol. Chem. 277:7897-7904.
    61. Nathanson, N., and D. Bodian. 1961. Experimental poliomyelitis following intramuscular virus injection. I. The effect of neural block on a neurotropic and a pantropic strain. Bull Johns Hopkins Hosp 108:308-19.
    62. Neznanov, N., A. Kondratova, K. M. Chumakov, B. Angres, B. Zhumabayeva, V. I. Agol, and A. V. Gudkov. 2001. Poliovirus Protein 3A Inhibits Tumor Necrosis Factor (TNF)-Induced Apoptosis by Eliminating the TNF Receptor from the Cell Surface. J. Virol. 75:10409-10420.
    63. Ohka, S., N. Matsuda, K. Tohyama, T. Oda, M. Morikawa, S. Kuge, and A. Nomoto. 2004. Receptor (CD155)-Dependent Endocytosis of Poliovirus and Retrograde Axonal Transport of the Endosome. J. Virol. 78:7186-7198.
    64. Ohka, S., W.-X. Yang, E. Terada, K. Iwasaki, and A. Nomoto. 1998. Retrograde Transport of Intact Poliovirus Through the Axon via the Fast Transport System. Virology 250:67-75.
    65. Okada, Y., G. Toda, H. Oka, A. Nomoto, and H. Yoshikura. 1987. Poliovirus infection of established human blood cell lines: relationship between the differentiation stage and susceptibility of cell killing. Virology 156:238-45.
    66. Omata, T., M. Kohara, Y. Sakai, A. Kameda, N. Imura, and A. Nomoto. 1984. Cloned infectious complementary DNA of the poliovirus Sabin 1 genome: biochemical and biological properties of the recovered virus. Gene 32:1-10.
    67. Pacheco, J. M., T. M. Henry, V. K. O'Donnell, J. B. Gregory, and P. W. Mason. 2003. Role of Nonstructural Proteins 3A and 3B in Host Range and Pathogenicity of Foot-and-Mouth Disease Virus. J. Virol. 77:13017-13027.
    68. Paya, C. V., P. J. Leibson, A. K. Patick, and M. Rodriguez. 1990. Inhibition of Theiler's virus-induced demyelination in vivo by tumor necrosis factor alpha. Int Immunol 2:909-13.
    69. Pereira, C. A., C. Moreira, M. H. Tsuhako, and M. T. de Franco. 2005. Mouse hepatitis virus 3 binding to macrophages correlates with resistance to experimental infection. Scand J Immunol 62 Suppl 1:95-9.
    70. Pulli, T., H. Lankinen, M. Roivainen, and T. Hyypia. 1998. Antigenic sites of coxsackievirus A9. Virology 240:202-12.
    71. Racaniello, V. R. 2006. One hundred years of poliovirus pathogenesis. Virology 344:9-16.
    72. Rigden, R. C., C. P. Carrasco, A. Summerfield, and K. C. McCullough. 2002. Macrophage phagocytosis of foot-and-mouth disease virus may create infectious carriers. Immunology 106:537-548.
    73. Rossi, C. P., M. Delcroix, I. Huitinga, A. McAllister, N. van Rooijen, E. Claassen, and M. Brahic. 1997. Role of macrophages during Theiler's virus infection. J Virol 71:3336-40.
    74. Schmidtke, M., H. C. Selinka, A. Heim, B. Jahn, M. Tonew, R. Kandolf, A. Stelzner, and R. Zell. 2000. Attachment of coxsackievirus B3 variants to various cell lines: mapping of phenotypic differences to capsid protein VP1. Virology 275:77-88.
    75. Sharma, R., S. Raychaudhuri, and A. Dasgupta. 2004. Nuclear entry of poliovirus protease-polymerase precursor 3CD: implications for host cell transcription shut-off. Virology 320:195-205.
    76. Takehana, H., T. Inomata, H. Niwano, M. Nishii, C. Matsuda, K. Kohno, Y. Machida, and T. Izumi. 2002. Immunomodulatory effect of pentoxifylline in suppressing experimental autoimmune myocarditis. Circ J 66:499-504.
    77. Tsuchiya, S., Y. Kobayashi, Y. Goto, H. Okumura, S. Nakae, T. Konno, and K. Tada. 1982. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res 42:1530-6.
    78. Tuomisto, T. T., M. S. Riekkinen, H. Viita, A.-L. Levonen, and S. Yla-Herttuala. 2005. Analysis of gene and protein expression during monocyte-macrophage differentiation and cholesterol loading--cDNA and protein array study. Atherosclerosis 180:283-291.
    79. Vreugdenhil, G. R., P. G. J. T. B. Wijnands, M. G. Netea, J. W. M. van der Meer, W. J. G. Melchers, and J. M. D. Galama. 2000. ENTEROVIRUS-INDUCED PRODUCTION OF PRO-INFLAMMATORY AND T-HELPER CYTOKINES BY HUMAN LEUKOCYTES. Cytokine 12:1793-1796.
    80. Vuorinen, T., R. Vainionpaa, H. Kettinen, and T. Hyypia. 1994. Coxsackievirus B3 infection in human leukocytes and lymphoid cell lines. Blood 84:823-9.
    81. Vuorinen, T., R. Vainionpaa, R. Vanharanta, and T. Hyypia. 1996. Susceptibility of human bone marrow cells and hematopoietic cell lines to coxsackievirus B3 infection. J. Virol. 70:9018-9023.
    82. Wada, H., K. Saito, T. Kanda, I. Kobayashi, H. Fujii, S. Fujigaki, N. Maekawa, H. Takatsu, H. Fujiwara, K. Sekikawa, and M. Seishima. 2001. Tumor necrosis factor-alpha (TNF-alpha) plays a protective role in acute viralmyocarditis in mice: A study using mice lacking TNF-alpha. Circulation 103:743-9.
    83. Wahid, R., M. J. Cannon, and M. Chow. 2005. Dendritic Cells and Macrophages Are Productively Infected by Poliovirus. J. Virol. 79:401-409.
    84. Wang, S. M., H. Y. Lei, K. J. Huang, J. M. Wu, J. R. Wang, C. K. Yu, I. J. Su, and C. C. Liu. 2003. Pathogenesis of enterovirus 71 brainstem encephalitis in pediatric patients: Roles of cytokines and cellular immune activation in patients with pulmonary edema. Journal of Infectious Diseases 188:564-570.
    85. Wang, S. M., C. C. Liu, H. W. Tseng, J. R. Wang, C. C. Huang, Y. J. Chen, Y. J. Yang, S. J. Lin, and T. F. Yeh. 1999. Clinical spectrum of enterovirus 71 infection in children in southern Taiwan, with an emphasis on neurological complications. Clin Infect Dis 29:184-90.
    86. Wang, Y.-F., C.-T. Chou, H.-Y. Lei, C.-C. Liu, S.-M. Wang, J.-J. Yan, I.-J. Su, J.-R. Wang, T.-M. Yeh, S.-H. Chen, and C.-K. Yu. 2004. A Mouse-Adapted Enterovirus 71 Strain Causes Neurological Disease in Mice after Oral Infection. J. Virol. 78:7916-7924.
    87. Wenner, H. A., and P. Kamitsuka. 1957. Primary sites of virus multiplication following intramuscular inoculation of poliomyelitis virus in cynomolgus monkeys. Virology 3:429-443.
    88. Whitton, J. L., C. T. Cornell, and R. Feuer. 2005. HOST AND VIRUS DETERMINANTS OF PICORNAVIRUS PATHOGENESIS AND TROPISM. Nature Reviews Microbiology 3:765-776.
    89. Yamada, T., A. Matsumori, and S. Sasayama. 1994. Therapeutic effect of anti-tumor necrosis factor-alpha antibody on the murine model of viral myocarditis induced by encephalomyocarditis virus. Circulation 89:846-51.
    90. Yang, W.-X., T. Terasaki, K. Shiroki, S. Ohka, J. Aoki, S. Tanabe, T. Nomura, E. Terada, Y. Sugiyama, and A. Nomoto. 1997. Efficient Delivery of Circulating Poliovirus to the Central Nervous System Independently of Poliovirus Receptor. Virology 229:421-428.
    91. Yin, H., A. K. Berg, J. Westman, C. Hellerstrom, and G. Frisk. 2002. Complete nucleotide sequence of a Coxsackievirus B-4 strain capable of establishing persistent infection in human pancreatic islet cells: effects on insulin release, proinsulin synthesis, and cell morphology. J Med Virol 68:544-57.
    92. Zhao, Z., T. Date, Y. Li, T. Kato, M. Miyamoto, K. Yasui, and T. Wakita. 2005. Characterization of the E-138 (Glu/Lys) mutation in Japanese encephalitis virus by using a stable, full-length, infectious cDNA clone. J Gen Virol 86:2209-2220.

    下載圖示 校內:2017-08-24公開
    校外:2017-08-24公開
    QR CODE