簡易檢索 / 詳目顯示

研究生: 吳建邦
Wu, Chien-Pang
論文名稱: 以複合式活性聚合法製備功能性團鏈共聚物及其於聚乳酸摻混應用研究
Synthesis and Applications of Functional Block Copolymers by Complex Living Polymerization
指導教授: 陳志勇 教授
Chen, Chuh-Yung
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 119
中文關鍵詞: 陰離子聚合硫醇-己內醯胺活性自由基聚合聚乳酸聚乙烯團鏈共聚物
外文關鍵詞: Anionic polymerization, Mercaptan/ε-caprolactam, Living free radical polymerization, Poly(Lactic Acid), Block copolymer
相關次數: 點閱:218下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以複合式陰離子聚合與硫醇-己內醯胺活性自由基聚合(Mercaptan/ε-caprolactam living polymerization)系統製備功能性團鏈共聚物,並將其應用於聚乳酸物性的改善。研究結果顯示,經由複合式陰離子聚合與硫醇-己內醯胺活性自由基聚合系統可成功製備聚苯乙烯(PS)-甲基丙烯酸甲酯(PMMA)雙嵌式團鏈共聚物(SM),利用0.5 wt%的SM與聚乳酸進行熔融摻混,可有效提升聚乳酸的結晶速率,半結晶時間(t1/2)最小可為2.4 mins (純聚乳酸為 9.6 mins),相對結晶度最高可為58 % (純聚乳酸為 37 %);由偏光顯微鏡(POM)觀察結果可知,SM的添加有效提升晶核的密度,使聚乳酸的結晶較為小與緻密。此外,當PS鏈段與PMMA鏈段以雙嵌式團鏈共聚物型式同時存在於聚乳酸中時,相較於PS或PMMA單獨存在於聚乳酸,SM雙嵌式團鏈共聚物對於聚乳酸結晶性的提升具有增效作用(Synergy effect);其中,SM雙嵌式團鏈共聚物中的PS鏈段與聚乳酸不相容,因此提供了誘導異相晶核生成的位置,PMMA鏈段則有助於SM雙嵌式團鏈共聚物於聚乳酸中的分散性。
    改變雙嵌式團鏈共聚物SM中PS與PMMA鏈段分子量的比例,評估其對聚乳酸結晶特性的影響,研究結果顯示當PMMA分子鏈段太長時,會阻礙聚乳酸結晶運動,導致結晶速率下降。對於SM雙嵌式團鏈共聚物而言,當PMMA鏈段與PS鏈段分子量比例為4時,在促進聚乳酸的結晶速度應用上可得到最佳化值。此外,本研究亦利用苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)與聚乳酸進行混摻,探討SBS摻混比例對於聚乳酸結晶行為與物性所造成的影響,研究結果顯示SBS可有效改善聚乳酸的結晶特性,以適當比例的SBS與聚乳酸進行混摻,可得到一具有機械強度與延伸性的生質合膠,當SBS的混摻比例為50 wt%時,相較於純聚乳酸,延伸率可提升2.5倍,抗衝擊強度可提升1.5倍。
    另一方面,同樣利用複合式陰離子聚合與硫醇-己內醯胺自由基活性聚合系統製備聚丁二烯-甲基丙烯酸甲酯雙嵌式團鏈共聚物(PBM),並將其應用於聚乳酸與高密度聚乙烯(HDPE)的熔融摻混改質。研究結果顯示,將聚乳酸與聚乙烯及上述的雙嵌式團鏈共聚物PBM以20/80/3的重量比例進行熔融摻混,PBM能有效提升摻混體的延伸率與耐衝擊特性,延伸率提升約4倍,耐衝擊性提升約1.5倍,其混摻分散的微分散相粒徑可小於 0.5 μm。因此,PBM可有效作為聚乳酸與聚乙烯兩不相容材料的相容助劑。此一複合式活性聚合法可用於合成功能性團鏈共聚物,將可進一步拓展功能性團鏈共聚物的應用,同時提升其商業化的可能性。所開發聚乳酸改質材料,其結晶速率、延伸率與抗衝擊強度得到明顯的改善,將有助於此生質材料的應用推廣。

    In this study, a series of block copolymers were prepared combining anionic polymerization and mercaptan/ε-caprolactam living polymerization. To evaluate how the polystyrene-block-poly(methyl methacrylate)(SM) copolymer affected the crystallization behavior of PLA, 0.5 wt% SM was melted blended with PLA. The results showed that SM effectively increased the crystallization kinetics of the PLA. To investigate the influence of the asymmetric ratio of SM on the crystallization rate of PLA, we synthesized SM featuring distinct asymmetric ratios and subsequently melt-blended the polymers with PLA. The results indicated that adding 0.5 wt% SM increased the crystallization rate of PLA when the value of the asymmetric ratio of SM was  4. In addition, poly(styrene-butadiene-styrene) copolymer was also used to enhance the crystallization ability and mechanical properties of PLA. The elongation at break and the impact resistance were significantly improved compared with that of neat PLA when the SBS content was above 50 wt%. Moreover, poly(butadiene-b-methyl methacrylate)(PBM) copolymer was also prepared and used as a compatibilizer for PLA/HDPE blend. When the blend weight ratio of PLA to HDPE and PBM was 20:80:3, the elongation and impact resistance were significantly improved compared with those of neat PLA and PLA/HDPE blend. The combination of anionic polymerization and mercaptan/ε-caprolactam living polymerization provided a new method for preparation of block copolymer. Using the new strategy facilitated preparing block copolymers in mild temperatures; thus, it is feasible for use in industrial applications.

    摘要 I Extended Abstract III 誌謝 IX 目 錄 X 表 目 錄 XIII 圖 目 錄 XIV 反 應 機 構 目 錄 XVII 第一章 緒論 1 第二章 文獻回顧 4 2-1 高分子活性聚合 4 2-2 陰離子聚合反應(Anionic chain polymerization) 6 2-2-1 陰離子聚合的起始反應 7 2-2-2 陰離子聚合的成長反應 10 2-2-3 陰離子聚合的終止反應 11 2-2-4 陰離子聚合團鏈共聚物 11 2-3 活性自由基聚合反應(Living free radical chain polymerization) 13 2-3-1 穩定自由基聚合反應-氮氧自由基系統(Stable Free Radical Polymerization, SFRP) 15 2-3-2 原子轉移自由基系統-金屬催化原子轉移自由基聚合反應(Metal Catalyzed Atom Transfer Radical Polymerization, ATRP) 19 2-3-3 改質鏈轉移系統-可逆加成鏈轉移(Reversible Addition Fragment chain Transfer, RAFT) 21 2-4 硫醇-己內醯胺(Thiol-Lactam)活性自由基聚合反應 23 2-5 高分子團鏈共聚物設計與應用 27 2-6 生質材料-聚乳酸之發展 32 2-7 研究動機與目的 36 第三章 實驗內容 38 3-1 實驗藥品 38 3-2 實驗儀器 38 3-3 實驗步驟 39 3-3-1 末端含有硫醇官能基聚苯乙烯之製備 39 3-3-2 末端含有硫醇官能基聚丁二烯之製備 40 3-3-3 聚苯乙烯-甲基丙烯酸甲酯雙嵌段團鏈共聚物之製備 40 3-3-4 聚丁二烯-甲基丙烯酸甲酯雙嵌段團鏈共聚物之製備 41 3-3-5 聚乳酸/SM嵌段團鏈共聚物混煉 41 3-3-6 聚乳酸/聚乙烯/PBM嵌段團鏈共聚物混煉 41 3-3-7 聚乳酸/SBS嵌段共聚物混煉 42 3-4 儀器分析方式 42 第四章 聚苯乙烯-甲基丙烯酸甲酯雙嵌式團鏈共聚物(SM)合成及其於聚乳酸摻混改質研究 44 4-1 末端含有硫醇官能基聚苯乙烯(PSSH)合成與結構鑑定分析 44 4-2 雙嵌式團鏈共聚物SM合成與結構鑑定分析 48 4-3 雙嵌式團鏈共聚物SM對於聚乳酸結晶特性影響 53 第五章 聚苯乙烯-甲基丙烯酸甲酯雙嵌式團鏈共聚物(SM)組成比例對於聚乳酸結晶特性影響 67 5-1 不同PS與PMMA鏈段組成比例之SM合成與其聚乳酸摻混體製備 67 5-2 不同PS與PMMA鏈段組成比例之SM對於聚乳酸結晶特性影響 69 第六章 苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)與聚乳酸摻混研究 87 6-1 SBS與聚乳酸摻混體製備及其熱性質分析 87 6-2 聚乳酸與摻混體之XRD分析 94 6-3 聚乳酸與摻混體之DMA分析 95 6-4 聚乳酸與摻混體之SEM分析 98 6-5 聚乳酸與摻混體之機械性質分析 99 第七章 聚丁二烯-甲基丙烯酸甲酯雙嵌段團鏈共聚物之製備與聚乳酸/聚乙烯摻混應用研究 102 7-1 末端含有硫醇官能基聚丁二烯(PBSH)與PBM之合成與結構鑑定分析 102 7-2 聚丁二烯-甲基丙烯酸甲酯(PBM)於聚乳酸/聚乙烯混摻研究 107 第八章 總結 112 參考文獻 115

    [1] Liu C, Qin H, Mather PT. J Mater Chem. 2007;17(16):1543-58.
    [2] Gupta P, Vermani K, Garg S. Drug Discovery Today. 2002;7(10):569-79.
    [3] Gao J, Li D, Wang D, Yang L. Eur Polym J. 2000;36(11):2517-22.
    [4] Szwarc M. Nature. 1956:2.
    [5] Szwarc M, Litt M. J Phys Chem. 1958;62(5):568-69.
    [6] Hirao A, Goseki R, Ishizone T. Macromolecules. 2014;47(6):1883-905.
    [7] Zhang W, Müller AHE. Prog Polym Sci. 2013;38(8):1121-62.
    [8] Yilgör E, Yilgör I. Prog Polym Sci. 2014;39(6):1165-95.
    [9] Zhang H, Alkayal N, Gnanou Y, Hadjichristidis N. Macromol Rapid Commun. 2014;35(4):378-90.
    [10] Lin Y, Zheng J, Yao K, Tan H, Zhang G, Gong J, et al. Polymer. 2015;59(0):252-59.
    [11] Macosko CW, Guégan P, Khandpur AK, Nakayama A, Marechal P, Inoue T. Macromolecules. 1996;29(17):5590-98.
    [12] Kim BJ, Bang J, Hawker CJ, Chiu JJ, Pine DJ, Jang SG, et al. Langmuir. 2007;23(25):12693-703.
    [13] Maeda R, Hayakawa T, Ober CK. Chem Mater. 2012;24(8):1454-61.
    [14] Bywater S. Prog Polym Sci. 1975;4(0):27-69.
    [15] Baskaran D, Müller AHE. Prog Polym Sci. 2007;32(2):173-219.
    [16] Glasse MD. Prog Polym Sci. 1983;9(2–3):133-95.
    [17] Dvoranek L, Vlcek P. Macromolecules. 1994;27(18):4881-85.
    [18] Baskaran D. Prog Polym Sci. 2003;28(4):521-81.
    [19] Cho Y-S, Lee J-S. Macromol Rapid Commun. 2001;22(8):638-42.
    [20] Ishizone T, Yoshimura K, Yanase E, Nakahama S. Macromolecules. 1999;32(3):955-57.
    [21] Stouffer JM, McCarthy TJ. Macromolecules. 1988;21(5):1204-08.
    [22] Braunecker WA, Matyjaszewski K. Prog Polym Sci. 2007;32(1):93-146.
    [23] Hardy CG, Zhang J, Yan Y, Ren L, Tang C. Prog Polym Sci. 2014;39(10):1742-96.
    [24] Hadjichristidis N, Iatrou H, Pitsikalis M, Mays J. Prog Polym Sci. 2006;31(12):1068-132.
    [25] Chen S, Binder WH. Polym Chem. 2015;6(3):448-58.
    [26] Beckwith ALJ, Bowry VW, O'Leary M, Moad G, Rizzardo E, Solomon DH. J Chem Soc, Chem Commun. 1986(13):1003-04.
    [27] Georges MK, Veregin RPN, Kazmaier PM, Hamer GK. Macromolecules. 1993;26(11):2987-88.
    [28] Georges MK, Veregin RPN, Kazmaier PM, Hamer GK, Saban M. Macromolecules. 1994;27(24):7228-29.
    [29] Saban MD, Georges MK, Veregin RPN, Hamer GK, Kazmaier PM. Macromolecules. 1995;28(20):7032-34.
    [30] Goto A, Fukuda T. Prog Polym Sci. 2004;29(4):329-85.
    [31] Hawker CJ, Elce E, Dao J, Volksen W, Russell TP, Barclay GG. Macromolecules. 1996;29(7):2686-88.
    [32] Wang J-S, Matyjaszewski K. Macromolecules. 1995;28(23):7901-10.
    [33] Wang J-S, Matyjaszewski K. Macromolecules. 1995;28(22):7572-73.
    [34] Wang J-S, Matyjaszewski K. J Am Chem Soc. 1995;117(20):5614-15.
    [35] Kato M, Kamigaito M, Sawamoto M, Higashimura T. Macromolecules. 1995;28(5):1721-23.
    [36] Kotani Y, Kato M, Kamigaito M, Sawamoto M. Macromolecules. 1996;29(22):6979-82.
    [37] Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, et al. Macromolecules. 1998;31(16):5559-62.
    [38] Hawthorne DG, Moad G, Rizzardo E, Thang SH. Macromolecules. 1999;32(16):5457-59.
    [39] Keddie DJ, Moad G, Rizzardo E, Thang SH. Macromolecules. 2012;45(13):5321-42.
    [40] Moad G, Rizzardo E, Thang SH. Polym Int. 2011;60(1):9-25.
    [41] Moad G, Rizzardo E, Thang SH. Polymer. 2008;49(5):1079-131.
    [42] Hu Y-H, Chen C-Y. J Polym Sci, Part A: Polym Chem. 2002;40(21):3692-702.
    [43] Hu Y-H, Chen C-Y, Wang C-C, Huang Y-H, Wang S-P. J Polym Sci, Part A: Polym Chem. 2004;42(19):4976-93.
    [44] Hu Y-H, Chen C-Y. Polym Degrad Stab. 2003;82(1):81-88.
    [45] Hu Y-H, Chen C-Y. Polym Degrad Stab. 2003;80(1):1-10.
    [46] Hu YH, Chen CY, Wang CC. Polym Degrad Stab. 2004;84(3):545-53.
    [47] Hu Y-H, Chen C-Y, Wang C-C. Polym Degrad Stab. 2004;84(3):505-14.
    [48] Darling SB. Prog Polym Sci. 2007;32(10):1152-204.
    [49] Koning C, Van Duin M, Pagnoulle C, Jerome R. Prog Polym Sci. 1998;23(4):707-57.
    [50] Lyu S, Jones TD, Bates FS, Macosko CW. Macromolecules. 2002;35(20):7845-55.
    [51] Litmanovich AD, Platé NA, Kudryavtsev YV. Prog Polym Sci. 2002;27(5):915-70.
    [52] Jiang G, Wu H, Guo S. Polymer Engineering & Science. 2010;50(12):2273-86.
    [53] Ide F, Hasegawa A. J Appl Polym Sci. 1974;18(4):963-74.
    [54] Chang K, Robertson ML, Hillmyer MA. ACS Applied Materials & Interfaces. 2009;1(10):2390-99.
    [55] Walther A, Matussek K, Müller AHE. ACS Nano. 2008;2(6):1167-78.
    [56] Lim LT, Auras R, Rubino M. Prog Polym Sci. 2008;33(8):820-52.
    [57] Rasal RM, Janorkar AV, Hirt DE. Prog Polym Sci. 2010;35(3):338-56.
    [58] Saeidlou S, Huneault MA, Li H, Park CB. Prog Polym Sci. 2012;37(12):1657-77.
    [59] Nam JY, Okamoto M, Okamoto H, Nakano M, Usuki A, Matsuda M. Polymer. 2006;47(4):1340-47.
    [60] Molnár K, Móczó J, Murariu M, Dubois P, Pukánszky B. Express Polymer Letters. 2009;3(1):49-61.
    [61] Papageorgiou GZ, Achilias DS, Nanaki S, Beslikas T, Bikiaris D. Thermochim Acta. 2010;511(1-2):129-39.
    [62] Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E. J Appl Polym Sci. 2007;103(1):244-50.
    [63] Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E. J Appl Polym Sci. 2007;103(1):198-203.
    [64] Cai Y, Yan S, Yin J, Fan Y, Chen X. J Appl Polym Sci. 2011;121(3):1408-16.
    [65] Wang T, Yang Y, Zhang C, Tang Z, Na H, Zhu J. J Appl Polym Sci. 2013;130(2):1328-36.
    [66] Wei XF, Bao RY, Cao ZQ, Yang W, Xie BH, Yang MB. Macromolecules. 2014;47(4):1439-48.
    [67] Labrecque LV, Kumar RA, Davé V, Gross RA, McCarthy SP. J Appl Polym Sci. 1997;66(8):1507-13.
    [68] Jacobsen S, Fritz HG. Polymer Engineering & Science. 1999;39(7):1303-10.
    [69] Martin O, Avérous L. Polymer. 2001;42(14):6209-19.
    [70] Jin H-J, Chin I-J, Kim M-N, Kim S-H, Yoon J-S. Eur Polym J. 2000;36(1):165-69.
    [71] Broz ME, VanderHart DL, Washburn NR. Biomaterials. 2003;24(23):4181-90.
    [72] Penczek S, Kubisa P, Szymanski R. Die Makromolekulare Chemie, Rapid Communications. 1991;12(2):77-80.
    [73] Quirk RP, Lynch T. Macromolecules. 1993;26(6):1206-12.
    [74] Quirk RP, Lee B. Polym Int. 1992;27(4):359-67.
    [75] Fischer EW, Sterzel HJ, Wegner G. Kolloid-Zeitschrift & Zeitschrift für Polymere. 1973;251(11):980-90.
    [76] Barrau S, Vanmansart C, Moreau M, Addad A, Stoclet G, Lefebvre JM, et al. Macromolecules. 2011;44(16):6496-502.
    [77] Park SH, Lee SG, Kim SH. Compos Part A Appl Sci Manuf. 2013;46:11-18.
    [78] Phuphuak Y, Miao Y, Zinck P, Chirachanchai S. Polymer. 2013;54(26):7058-70.
    [79] Zhang G, Zhang J, Wang S, Shen D. Journal of Polymer Science, Part B: Polymer Physics. 2003;41(1):23-30.
    [80] Shirahase T, Komatsu Y, Tominaga Y, Asai S, Sumita M. Polymer. 2006;47(13):4839-44.
    [81] Samuel C, Raquez JM, Dubois P. Polymer (United Kingdom). 2013;54(15):3931-39.
    [82] Naga N, Yoshida Y, Inui M, Noguchi K, Murase S. J Appl Polym Sci. 2011;119(4):2058-64.
    [83] Sato S, Gondo D, Wada T, Kanehashi S, Nagai K. J Appl Polym Sci. 2013;129(3):1607-17.
    [84] Sun Y, He C. ACS Macro Letters. 2012;1(6):709-13.
    [85] You J, Yu W, Zhou C. Ind Eng Chem Res. 2014;53(3):1097-107.
    [86] Xu Z, Niu Y, Yang L, Xie W, Li H, Gan Z, et al. Polymer. 2010;51(3):730-37.
    [87] Zhao H, Bian Y, Xu M, Han C, Li Y, Dong Q, et al. CrystEngComm. 2014;16(19):3896-905.
    [88] Crist B, Nesarikar AR. Macromolecules. 1995;28(4):890-96.
    [89] Bolton J, Rzayev J. Macromolecules. 2014;47(9):2864-74.
    [90] Imre B, Renner K, Pukánszky B. Express Polymer Letters. 2014;8(1):2-14.
    [91] Souza DHS, Andrade CT, Dias ML. J Appl Polym Sci. 2014;131(11).
    [92] Lorenzo AT, Arnal ML, Albuerne J, Müller AJ. Polym Test. 2007;26(2):222-31.
    [93] Wang L, Jing X, Cheng H, Hu X, Yang L, Huang Y. Ind Eng Chem Res. 2012;51(33):10731-41.
    [94] Liuyun J, Chengdong X, Lixin J, Lijuan X. Compos Sci Technol. 2014;93:61-67.
    [95] Zhou J, Jiang Z, Wang Z, Zhang J, Li J, Li Y, et al. RSC Advances. 2013;3(40):18464-73.
    [96] Nurkhamidah S, Woo EM. Macromol Chem Phys. 2011;212(15):1663-70.
    [97] Abreu FOMS, Forte MMC, Liberman SA. J Appl Polym Sci. 2005;95(2):254-63.
    [98] Mohamed A, Gordon SH, Biresaw G. J Appl Polym Sci. 2007;106(3):1689-96.
    [99] Wang Y, Funari SS, Mano JF. Macromol Chem Phys. 2006;207(14):1262-71.
    [100] Han L, Han C, Dong L. Polym Int. 2013;62(2):295-303.
    [101] Hao Y, Liang H, Bian J, Sun S, Zhang H, Dong L. Polym Int. 2014;63(4):660-66.
    [102] Jang LW, Lee DC. Polymer. 2000;41(5):1749-56.
    [103] Harrats C, Jérôme R. J Polym Sci, Part B: Polym Phys. 2005;43(7):837-48.

    下載圖示 校內:2020-08-19公開
    校外:2020-08-19公開
    QR CODE