簡易檢索 / 詳目顯示

研究生: 鄭亘甫
Cheng, Keng-Fuu
論文名稱: 架設自動化雷射微影系統以提高有機電晶體製程之產率及穩定度
Automatic laser lithography system installation for stable and efficient organic field effect transistor fabrication
指導教授: 徐邦昱
Hsu, Bang-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 51
中文關鍵詞: 聚(3-己烷噻吩)有機薄膜電晶體自動化雷射曝光
外文關鍵詞: Maskless Lithography, Organic Thin Film Transistor, Self-Assembled Monolayer, poly(3-hexylthiophene)
相關次數: 點閱:63下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 薄膜電晶體訊號開關的功能被廣泛應用於平板顯示器,是面板產業中不可或缺的技術。導電高分子製做的有機薄膜電晶體因其可撓、可液相大面積製作的特點,成為新一代可撓曲平板顯示器的熱門驅動元件。然而,導電高分子軟質的特性,也使其分子排列形貌及相對應之電子結構缺陷多,電傳導效率不佳。為提升導電高分子的電性表現,需要製造長程有序的高分子結晶結構,方能提升載子傳導的效率。
    本研究以聚(3-己烷噻吩)(P3HT)為薄膜電晶體半導體層材料,並系統性調控基板表面性質及製程溫度,以提升高分子的微觀排列有序性並提高電晶體量測之巨觀載子遷移率。
    使高分子規整排列後,需藉由電晶體量測載子於電場中的傳遞效率,以驗證微觀排列與巨觀電性的相依性。有機電晶體的製作過程中,電極定義載子通道幾何形狀,是電晶體中不可或缺的結構;若根據半導體高分子能有序排列的距離定義、並製作電極,便能得到微觀電子結構效能的相關資訊,更精確聯繫微觀分子排列與電子結構效能。電極的製作仰賴微影製程,藉由對光阻曝光,再以顯影液溶解受曝圖形,便能蒸鍍金屬電極於基板,成功定義電晶體通道。為控制電晶體通道的幾何形狀,本研究自行架設自動化雷射曝光系統,以電腦繪圖定義曝光圖形;當通道形狀需要對應高分子有序區域改變時,便能有效率地即時改變電極的形狀及位置,並藉由電晶體量測電學傳導特性,連結微觀分子堆疊結構與巨觀載子傳導效率。
    本研究以自動化雷射曝光系統蒸鍍電極以製作高分子薄膜電晶體,此系統的架設使本實驗室的電晶體製程更完整,並創造微影製程的可調控性,以應對有機電子元件與半導體高分子多變的製程,為實驗室的未來發展打下兼顧彈性與效率的基礎。

    In this thesis, an automatic laser lithography system was successfully built, and organic thin film transistors (OTFTs) were fabricated via the system. By building a maskless, direct-laser-writing lithography system, we were able to adjust device geometry to match variable ordered region of organic thin films created through different processing conditions. After defining the device geometry, different self-assembled monolayers (SAM) was deposited, and then the poly(3-hexylthiophene) (P3HT) semiconducting layer was deposited under various temperature values to complete the fabrication of OTFTs. The measurements from atomic force microscopy, polarized Raman spectroscopy and transistor operations revealed that P3HT backbones demonstrated the highest order and performance at different deposition temperatures. Moreover, P3HT chains produced the best results in macroscopic morphology, microscopic order, and carrier mobility while the chain lengths of SAMs are compatible to that of the P3HT sidechains. Mismatch between the chain lengths of the SAMs and the side chain of P3HT inhibited proper interdigitation, making alignment difficult for P3HT. The device performance obtained by the self-built laser lithography system matched our previous works about the controls over intermolecular interactions; the higher order, the better performance. The harnessed intermolecular forces shed light on the future viability of soft electronics.

    目錄 摘要 I Extended abstract II 目錄 VII 圖目錄 VIII 表目錄 X 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 第二章 理論基礎與文獻回顧 3 2-1 薄膜電晶體 3 2-1.1. 薄膜電晶體結構 3 2-1.2. 薄膜電晶體操作及參數介紹 4 2-2 半導體高分子簡介 7 2-2.1. 半導體高分子 7 2-2.2. 聚噻吩高分子 7 2-3 高分子薄膜電晶體 9 2-3.1. 高分子排列有序性 9 2-3.2. 電極製備與微影製程 15 第三章 實驗設備及流程 18 3-1 實驗材料 18 3-2 實驗設備 19 3-3 分析儀器 23 3-4 實驗流程 24 第四章 結果與討論 26 4-1 實驗介紹 26 4-2 微影製程及電極蒸鍍 27 4-3 電性量測 30 4-4 極化拉曼散射頻譜 37 4-5 表面形貌分析 44 第五章 結論及未來實驗方向 48 第六章 參考資料 49

    [1] Heeger, Alan J. "Semiconducting polymers: the third generation." Chemical Society Reviews 39.7 (2010): 2354-2371.
    [2] Hagler, T. W., et al. "Enhanced order and electronic delocalization in conjugated polymers oriented by gel processing in polyethylene." Physical Review B 44.16 (1991): 8652.
    [3] Thomas, Stuart R., Pichaya Pattanasattayavong, and Thomas D. Anthopoulos. "Solution-processable metal oxide semiconductors for thin-film transistor applications." Chemical Society Reviews 42.16 (2013): 6910-6923.
    [4] Elsenbaumer, R. L., K. Yo Jen, and R. Oboodi. "Processible and environmentally stable conducting polymers." Synthetic Metals 15.2-3 (1986): 169-174.
    [5] Etxebarria, Ikerne, Jon Ajuria, and Roberto Pacios. "Polymer: fullerene solar cells: materials, processing issues, and cell layouts to reach power conversion efficiency over 10%, a review." Journal of Photonics for Energy 5.1 (2015): 057214.
    [6] Sirringhaus, Henning, et al. "Two-dimensional charge transport in self-organized, high-mobility conjugated polymers." Nature 401.6754 (1999): 685-688.
    [7] Hosokawa, Yuki, et al. "Molecular orientation and anisotropic carrier mobility in poorly soluble polythiophene thin films." Applied Physics Letters 100.20 (2012): 112.
    [8] Hiszpanski, Anna M., and Yueh-Lin Loo. "Directing the film structure of organic semiconductors via post-deposition processing for transistor and solar cell applications." Energy & Environmental Science 7.2 (2014): 592-608.
    [9] Jo, Gyounglyul, Jaehan Jung, and Mincheol Chang. "Controlled self-assembly of conjugated polymers via a solvent vapor pre-treatment for use in organic field-effect transistors." Polymers 11.2 (2019): 332.
    [10] Wang, Wei-Chih, et al. "Face-on reorientation of π-conjugated polymers in thin films by surface-segregated monolayers." Journal of Materials Chemistry A 8.13 (2020): 6268-6275.
    [11] Huq, Abul F., and Alamgir Karim. "Comparative solvent quality dependent crystallization in solvent vapor annealing of P3HT: PCBM thin films by in-situ GIWAXS." Polymer 165 (2019): 101-111.
    [12] Schreiber, Frank. "Structure and growth of self-assembling monolayers." Progress in surface science 65.5-8 (2000): 151-257.
    [13] Kim, Do Hwan, et al. "Enhancement of field‐effect mobility due to surface‐mediated molecular ordering in regioregular polythiophene thin film transistors." Advanced Functional Materials 15.1 (2005): 77-82.
    [14] Liu, Danqing, et al. "Self‐Assembled Monolayers of Phosphonic Acids with Enhanced Surface Energy for High‐Performance Solution‐Processed N‐Channel Organic Thin‐Film Transistors." Angewandte Chemie 125.24 (2013): 6342-6347.
    [15] Virkar, Ajay, et al. "The role of OTS density on pentacene and C60 nucleation, thin film growth, and transistor performance." Advanced Functional Materials 19.12 (2009): 1962-1970.
    [16] Chen, Hongliang, et al. "Interface Engineering in Organic Field-Effect Transistors: Principles, Applications, and Perspectives." Chemical reviews 120.5 (2020): 2879-2949.
    [17] Lan, Yi-Kang, and Ching-I. Huang. "A theoretical study of the charge transfer behavior of the highly regioregular poly-3-hexylthiophene in the ordered state." The Journal of Physical Chemistry B 112.47 (2008): 14857-14862.
    [18] Qu, Sanyin, et al. "Highly anisotropic P3HT films with enhanced thermoelectric performance via organic small molecule epitaxy." NPG Asia Materials 8.7 (2016): e292-e292.
    [19] Hartmann, Lucia, et al. "2D Versus 3D Crystalline Order in Thin Films of Regioregular Poly (3‐hexylthiophene) Oriented by Mechanical Rubbing and Epitaxy." Advanced Functional Materials 21.21 (2011): 4047-4057.
    [20] Hu, Zhijun, and Alain M. Jonas. "Control of crystal orientation in soft nanostructures by nanoimprint lithography." Soft Matter 6.1 (2010): 21-28.
    [21] Brinkmann, Martin, and J‐C. Wittmann. "Orientation of regioregular poly (3‐hexylthiophene) by directional solidification: a simple method to reveal the semicrystalline structure of a conjugated polymer." Advanced Materials 18.7 (2006): 860-863.
    [22] Luo, Chan, et al. "General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility." Nano letters 14.5 (2014): 2764-2771.
    [23] Liu, Chang, et al. "Low bandgap semiconducting polymers for polymeric photovoltaics." Chemical Society Reviews 45.17 (2016): 4825-4846.
    [24] Irwin, Michael D., et al. "p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells." Proceedings of the National Academy of Sciences 105.8 (2008): 2783-2787.
    [25] 邱世偉(2020)。以異向性拉曼散射頻譜與載子遷移率解析高度有序聚噻吩奈米纖維之侷域分子有序性對巨觀載子遷移率的影響。國立成功大學材料科學及工程學系碩士論文,台南市。
    [26] 林廷翰(2020)。評估聚(3-己烷噻吩)在不同鏈長自組裝單分子層上形貌準直排列的驅動力。國立成功大學材料科學及工程學系碩士論文,台南市。
    [27] Brinkmann, Martin, and Patrice Rannou. "Effect of molecular weight on the structure and morphology of oriented thin films of regioregular poly (3‐hexylthiophene) grown by directional epitaxial solidification." Advanced Functional Materials 17.1 (2007): 101-108.

    下載圖示 校內:2023-10-05公開
    校外:2023-10-05公開
    QR CODE