| 研究生: |
賴威宏 Lai, Wei-Hong |
|---|---|
| 論文名稱: |
以電腦模擬研究人類突變型普恩蛋白在不同環境條件下之結構特性與聚集機制關係 Computer simulation studies of human prion protein mutants under different environmental conditions: Implication of structural characteristics and aggregation mechanism |
| 指導教授: |
黃吉川
Hwang, Chi-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 普恩蛋白 、分子動力學 、結構特性 、聚集機制 、中間態 |
| 外文關鍵詞: | prion protein, molecular dynamics, structural characteristics, aggregation mechanism, intermediate |
| 相關次數: | 點閱:103 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
普恩蛋白疾病又名為傳染性海綿狀腦病,主要是正常型普恩蛋白結構上發生錯誤摺疊而轉變成致病型普恩蛋白,進而在腦部沉積成不可溶的纖維,造成神經細胞死亡。為了探討D178N和F198S人類突變型普恩蛋白結構特性和聚集機制的關係,本文利用分子動力學模擬在不同溫度與酸鹼值條件下,將原本是單體的普恩蛋白(I-178、I-198)和已形成雙體普恩蛋白拆解後的單體(II-178、II-198)比較之下,期望藉由結構的動態行為找出影響普恩蛋白聚集前的中間態結構。結果顯示,酸性pH值條件下容易誘使β摺板(β-sheet)延展,Helix 2易受到環境擾動而展開,最後從蛋白質-蛋白質交互作用的平均能量推論,II-178和II-198的殘基片段165-170以及186-194可能是引發聚集的關鍵序列。
Prion disease, also called transmissible spongiform encephalopathy (TSE), is the conformational transition of the physiological cellular form (PrPC) to a pathological scrapie form (PrPSc), resulting in misfolding to insoluble fibrillar aggregates deposited in our cerebellum. To investigate the implication of structural characteristics and aggregation mechanism of human prion protein mutant D178N and F198S, we performed molecular dynamics simulations under various temperatures and pH values on two types of models : original monomeric form referred to first type (I-178, I-198) and the monomer from natural dimeric form referred to second type (II-178, II-198). Furthermore, it is expected that the structural dynamically behaviours of prion protein intermediates could be identified before aggregating to oligomers even to fibrils. The significant results have indicated that all of monomeric forms sensitively triggered the elongation of β-sheet transition under low pH condition, noteworthily, the C-termini of helix 2 domain were destabilized via environmental perturbations. Eventually, we made a conclusion through protein-protein interaction energy distributions that the segments 165-170 and 186-194 for second type of prion protein are probably the crucial event linked to aggregation steps.
[1] C. A. Ross and M. A. Poirier, "Protein aggregation and neurodegenerative disease," Nat Med, vol. 10 Suppl, pp. S10-7, Jul 2004.
[2] D. M. Skovronsky, V. M. Lee, and J. Q. Trojanowski, "Neurodegenerative diseases: new concepts of pathogenesis and their therapeutic implications," Annu Rev Pathol, vol. 1, pp. 151-70, 2006.
[3] C. Haass and D. J. Selkoe, "Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide," Nat Rev Mol Cell Biol, vol. 8, pp. 101-12, Feb 2007.
[4] N. C. Berchtold and C. W. Cotman, "Evolution in the conceptualization of dementia and Alzheimer's disease: Greco-Roman period to the 1960s," Neurobiol Aging, vol. 19, pp. 173-89, May-Jun 1998.
[5] G. G. Glenner and C. W. Wong, "Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein," Biochem Biophys Res Commun, vol. 120, pp. 885-90, May 16 1984.
[6] M. Goedert, M. G. Spillantini, R. Jakes, D. Rutherford, and R. A. Crowther, "Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease," Neuron, vol. 3, pp. 519-26, Oct 1989.
[7] M. Sakono and T. Zako, "Amyloid oligomers: formation and toxicity of Abeta oligomers," FEBS J, vol. 277, pp. 1348-58, Mar 2010.
[8] L. Crews and E. Masliah, "Molecular mechanisms of neurodegeneration in Alzheimer's disease," Hum Mol Genet, vol. 19, pp. R12-20, Apr 15 2010.
[9] S. Imarisio, J. Carmichael, V. Korolchuk, C. W. Chen, S. Saiki, C. Rose, et al., "Huntington's disease: from pathology and genetics to potential therapies," Biochem J, vol. 412, pp. 191-209, Jun 1 2008.
[10] R. H. Myers, "Huntington's disease genetics," NeuroRx, vol. 1, pp. 255-62, Apr 2004.
[11] J. Parkinson, "An essay on the shaking palsy. 1817," J Neuropsychiatry Clin Neurosci, vol. 14, pp. 223-36; discussion 222, Spring 2002.
[12] J. Jankovic, "Parkinson's disease: clinical features and diagnosis," J Neurol Neurosurg Psychiatry, vol. 79, pp. 368-76, Apr 2008.
[13] C. G. Goetz, W. Poewe, O. Rascol, C. Sampaio, G. T. Stebbins, C. Counsell, et al., "Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations," Mov Disord, vol. 19, pp. 1020-8, Sep 2004.
[14] L. C. Wijesekera and P. N. Leigh, "Amyotrophic lateral sclerosis," Orphanet J Rare Dis, vol. 4, p. 3, 2009.
[15] H. X. Deng, W. Chen, S. T. Hong, K. M. Boycott, G. H. Gorrie, N. Siddique, et al., "Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia," Nature, vol. 477, pp. 211-5, Sep 8 2011.
[16] C. L. Huang, J. M. Yang, K. C. Wang, Y. C. Lee, Y. L. Lin, Y. C. Yang, et al., "Gastrodia elata prevents huntingtin aggregations through activation of the adenosine A(2)A receptor and ubiquitin proteasome system," J Ethnopharmacol, vol. 138, pp. 162-8, Oct 31 2011.
[17] S. B. Prusiner, "Novel proteinaceous infectious particles cause scrapie," Science, vol. 216, pp. 136-44, Apr 9 1982.
[18] C. Soto, "Diagnosing prion diseases: needs, challenges and hopes," Nat Rev Microbiol, vol. 2, pp. 809-19, Oct 2004.
[19] A. Aguzzi and M. Heikenwalder, "Pathogenesis of prion diseases: current status and future outlook," Nat Rev Microbiol, vol. 4, pp. 765-75, Oct 2006.
[20] S. J. Lee, P. Desplats, C. Sigurdson, I. Tsigelny, and E. Masliah, "Cell-to-cell transmission of non-prion protein aggregates," Nat Rev Neurol, vol. 6, pp. 702-6, Dec 2010.
[21] N. R. Cashman and B. Caughey, "Prion diseases--close to effective therapy?," Nat Rev Drug Discov, vol. 3, pp. 874-84, Oct 2004.
[22] L. J. K. Wayne M. Becker, Jeff Hardin, Gregory Paul Bertoni, The World of the Cell, 7th Edition: Benjamin Cummings, 2009.
[23] A. Tikvah, C. W. A, H. D. A, and C. M. C, "Does the Agent of Scrapie Replicate without Nucleic Acid ?," Nature, vol. 214, pp. 764-766, 1967.
[24] F. Wopfner, G. Weidenhofer, R. Schneider, A. von Brunn, S. Gilch, T. F. Schwarz, et al., "Analysis of 27 mammalian and 9 avian PrPs reveals high conservation of flexible regions of the prion protein," J Mol Biol, vol. 289, pp. 1163-78, Jun 25 1999.
[25] R. Zahn, A. Liu, T. Luhrs, R. Riek, C. von Schroetter, F. Lopez Garcia, et al., "NMR solution structure of the human prion protein," Proc Natl Acad Sci U S A, vol. 97, pp. 145-50, Jan 4 2000.
[26] S. B. Prusiner, "Molecular biology of prion diseases," Science, vol. 252, pp. 1515-22, Jun 14 1991.
[27] C. S. Burns, E. Aronoff-Spencer, C. M. Dunham, P. Lario, N. I. Avdievich, W. E. Antholine, et al., "Molecular features of the copper binding sites in the octarepeat domain of the prion protein," Biochemistry, vol. 41, pp. 3991-4001, Mar 26 2002.
[28] B. Caughey and G. S. Baron, "Prions and their partners in crime," Nature, vol. 443, pp. 803-810, Oct 19 2006.
[29] R. Linden, V. R. Martins, M. A. M. Prado, M. Cammarota, I. Izquierdo, and R. R. Brentani, "Physiology of the prion protein," Physiological Reviews, vol. 88, pp. 673-728, Apr 2008.
[30] L. M. Taubner, E. A. Bienkiewicz, V. Copie, and B. Caughey, "Structure of the flexible amino-terminal domain of prion protein bound to a sulfated glycan," J Mol Biol, vol. 395, pp. 475-90, Jan 22 2010.
[31] C. Selvaggini, L. De Gioia, L. Cantu, E. Ghibaudi, L. Diomede, F. Passerini, et al., "Molecular characteristics of a protease-resistant, amyloidogenic and neurotoxic peptide homologous to residues 106-126 of the prion protein," Biochem Biophys Res Commun, vol. 194, pp. 1380-6, Aug 16 1993.
[32] M. Ettaiche, R. Pichot, J. P. Vincent, and J. Chabry, "In vivo cytotoxicity of the prion protein fragment 106-126," J Biol Chem, vol. 275, pp. 36487-90, Nov 24 2000.
[33] P. Walsh, K. Simonetti, and S. Sharpe, "Core structure of amyloid fibrils formed by residues 106-126 of the human prion protein," Structure, vol. 17, pp. 417-26, Mar 11 2009.
[34] A. Aguzzi, C. Sigurdson, and M. Heikenwaelder, "Molecular mechanisms of prion pathogenesis," Annu Rev Pathol, vol. 3, pp. 11-40, 2008.
[35] K. M. Pan, M. Baldwin, J. Nguyen, M. Gasset, A. Serban, D. Groth, et al., "Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins," Proc Natl Acad Sci U S A, vol. 90, pp. 10962-6, Dec 1 1993.
[36] S. B. Prusiner, "Neurodegenerative Diseases and Prions," New England Journal of Medicine, vol. 344, pp. 1516-1526, 2001.
[37] J. Castilla, P. Saa, C. Hetz, and C. Soto, "In vitro generation of infectious scrapie prions," Cell, vol. 121, pp. 195-206, Apr 22 2005.
[38] R. K. Meyer, A. Lustig, B. Oesch, R. Fatzer, A. Zurbriggen, and M. Vandevelde, "A monomer-dimer equilibrium of a cellular prion protein (PrPC) not observed with recombinant PrP," J Biol Chem, vol. 275, pp. 38081-7, Dec 1 2000.
[39] P. E. Bendheim and D. C. Bolton, "A 54-Kda Normal Cellular Protein May Be the Precursor of the Scrapie Agent Protease-Resistant Protein," Proceedings of the National Academy of Sciences of the United States of America, vol. 83, pp. 2214-2218, Apr 1986.
[40] S. A. Priola, B. Caughey, K. Wehrly, and B. Chesebro, "A 60-kDa Prion Protein (PrP) with Properties of Both the Normal and Scrapie-associated Forms of PrP," Journal of Biological Chemistry, vol. 270, pp. 3299-3305, February 17, 1995 1995.
[41] K. J. Knaus, M. Morillas, W. Swietnicki, M. Malone, W. K. Surewicz, and V. C. Yee, "Crystal structure of the human prion protein reveals a mechanism for oligomerization," Nat Struct Biol, vol. 8, pp. 770-4, Sep 2001.
[42] S. Lee and D. Eisenberg, "Seeded conversion of recombinant prion protein to a disulfide-bonded oligomer by a reduction-oxidation process," Nat Struct Biol, vol. 10, pp. 725-30, Sep 2003.
[43] J. Monod, J. Wyman, and J. P. Changeux, "On the Nature of Allosteric Transitions: A Plausible Model," J Mol Biol, vol. 12, pp. 88-118, May 1965.
[44] K. Jansen, O. Schafer, E. Birkmann, K. Post, H. Serban, S. B. Prusiner, et al., "Structural intermediates in the putative pathway from the cellular prion protein to the pathogenic form," Biol Chem, vol. 382, pp. 683-91, Apr 2001.
[45] T. Kaimann, S. Metzger, K. Kuhlmann, B. Brandt, E. Birkmann, H. D. Holtje, et al., "Molecular model of an alpha-helical prion protein dimer and its monomeric subunits as derived from chemical cross-linking and molecular modeling calculations," J Mol Biol, vol. 376, pp. 582-96, Feb 15 2008.
[46] S. Lee, L. Antony, R. Hartmann, K. J. Knaus, K. Surewicz, W. K. Surewicz, et al., "Conformational diversity in prion protein variants influences intermolecular beta-sheet formation," EMBO J, vol. 29, pp. 251-62, Jan 6 2010.
[47] F. E. Cohen, K. M. Pan, Z. Huang, M. Baldwin, R. J. Fletterick, and S. B. Prusiner, "Structural clues to prion replication," Science, vol. 264, pp. 530-1, Apr 22 1994.
[48] I. V. Baskakov, G. Legname, S. B. Prusiner, and F. E. Cohen, "Folding of prion protein to its native alpha-helical conformation is under kinetic control," J Biol Chem, vol. 276, pp. 19687-90, Jun 8 2001.
[49] A. C. Apetri, K. Surewicz, and W. K. Surewicz, "The effect of disease-associated mutations on the folding pathway of human prion protein," J Biol Chem, vol. 279, pp. 18008-14, Apr 23 2004.
[50] K. Kuwata, H. Li, H. Yamada, G. Legname, S. B. Prusiner, K. Akasaka, et al., "Locally disordered conformer of the hamster prion protein: a crucial intermediate to PrPSc?," Biochemistry, vol. 41, pp. 12277-83, Oct 15 2002.
[51] D. Thirumalai, D. K. Klimov, and R. I. Dima, "Emerging ideas on the molecular basis of protein and peptide aggregation," Curr Opin Struct Biol, vol. 13, pp. 146-59, Apr 2003.
[52] A. C. Apetri, K. Maki, H. Roder, and W. K. Surewicz, "Early intermediate in human prion protein folding as evidenced by ultrarapid mixing experiments," J Am Chem Soc, vol. 128, pp. 11673-8, Sep 6 2006.
[53] C. Weissmann, "The state of the prion," Nat Rev Microbiol, vol. 2, pp. 861-71, Nov 2004.
[54] C. W. Yi, W. C. Xu, J. Chen, and Y. Liang, "Recent progress in prion and prion-like protein aggregation," Acta Biochim Biophys Sin (Shanghai), vol. 45, pp. 520-6, Jun 2013.
[55] J. S. Griffith, "Self-replication and scrapie," Nature, vol. 215, pp. 1043-4, Sep 2 1967.
[56] S. B. Prusiner, "Cell biology. A unifying role for prions in neurodegenerative diseases," Science, vol. 336, pp. 1511-3, Jun 22 2012.
[57] M. W. van der Kamp and V. Daggett, "The consequences of pathogenic mutations to the human prion protein," Protein Eng Des Sel, vol. 22, pp. 461-8, Aug 2009.
[58] J. Gsponer, P. Ferrara, and A. Caflisch, "Flexibility of the murine prion protein and its Asp178Asn mutant investigated by molecular dynamics simulations," J Mol Graph Model, vol. 20, pp. 169-82, 2001.
[59] E. el-Bastawissy, M. H. Knaggs, and I. H. Gilbert, "Molecular dynamics simulations of wild-type and point mutation human prion protein at normal and elevated temperature," J Mol Graph Model, vol. 20, pp. 145-54, 2001.
[60] M. Sekijima, C. Motono, S. Yamasaki, K. Kaneko, and Y. Akiyama, "Molecular dynamics simulation of dimeric and monomeric forms of human prion protein: insight into dynamics and properties," Biophys J, vol. 85, pp. 1176-85, Aug 2003.
[61] A. Barducci, R. Chelli, P. Procacci, and V. Schettino, "Misfolding pathways of the prion protein probed by molecular dynamics simulations," Biophys J, vol. 88, pp. 1334-43, Feb 2005.
[62] M. S. Shamsir and A. R. Dalby, "One gene, two diseases and three conformations: molecular dynamics simulations of mutants of human prion protein at room temperature and elevated temperatures," Proteins, vol. 59, pp. 275-90, May 1 2005.
[63] P. Piccardo, J. J. Liepnieks, A. William, S. R. Dlouhy, M. R. Farlow, K. Young, et al., "Prion proteins with different conformations accumulate in Gerstmann-Straussler-Scheinker disease caused by A117V and F198S mutations," Am J Pathol, vol. 158, pp. 2201-7, Jun 2001.
[64] S. I. Zaidi, S. L. Richardson, S. Capellari, L. Song, M. A. Smith, B. Ghetti, et al., "Characterization of the F198S prion protein mutation: enhanced glycosylation and defective refolding," J Alzheimers Dis, vol. 7, pp. 159-71; discussion 173-80, Apr 2005.
[65] Y. Yong, L. R. Dai, M. Iwamoto, and Z. C. Ou-Yang, "Molecular dynamics study on the conformational transition of prion induced by the point mutation: F198S," Thin Solid Films, vol. 499, pp. 224-228, Mar 21 2006.
[66] M. W. van der Kamp and V. Daggett, "Pathogenic Mutations in the Hydrophobic Core of the Human Prion Protein Can Promote Structural Instability and Misfolding," Journal of Molecular Biology, vol. 404, pp. 732-748, Dec 10 2010.
[67] W. Chen, M. W. van der Kamp, and V. Daggett, "Diverse effects on the native beta-sheet of the human prion protein due to disease-associated mutations," Biochemistry, vol. 49, pp. 9874-81, Nov 16 2010.
[68] L. Zhong, "Exposure of hydrophobic core in human prion protein pathogenic mutant H187R," J Biomol Struct Dyn, vol. 28, pp. 355-61, Dec 2010.
[69] E. Behmard, P. Abdolmaleki, E. B. Asadabadi, and S. Jahandideh, "Prevalent mutations of human prion protein: a molecular modeling and molecular dynamics study," J Biomol Struct Dyn, vol. 29, pp. 379-89, Oct 2011.
[70] J. Guo, H. Ren, L. Ning, H. Liu, and X. Yao, "Exploring structural and thermodynamic stabilities of human prion protein pathogenic mutants D202N, E211Q and Q217R," J Struct Biol, vol. 178, pp. 225-32, Jun 2012.
[71] J. Guo, L. Ning, H. Ren, H. Liu, and X. Yao, "Influence of the pathogenic mutations T188K/R/A on the structural stability and misfolding of human prion protein: insight from molecular dynamics simulations," Biochim Biophys Acta, vol. 1820, pp. 116-23, Feb 2012.
[72] J. Stohr, N. Weinmann, H. Wille, T. Kaimann, L. Nagel-Steger, E. Birkmann, et al., "Mechanisms of prion protein assembly into amyloid," Proc Natl Acad Sci U S A, vol. 105, pp. 2409-14, Feb 19 2008.
[73] R. Day, B. J. Bennion, S. Ham, and V. Daggett, "Increasing temperature accelerates protein unfolding without changing the pathway of unfolding," J Mol Biol, vol. 322, pp. 189-203, Sep 6 2002.
[74] W. Swietnicki, R. Petersen, P. Gambetti, and W. K. Surewicz, "pH-dependent stability and conformation of the recombinant human prion protein PrP(90-231)," Journal of Biological Chemistry, vol. 272, pp. 27517-27520, Oct 31 1997.
[75] J. Moult, "The current state of the art in protein structure prediction," Curr Opin Biotechnol, vol. 7, pp. 422-7, Aug 1996.
[76] 馮. 嶽俊傑, 梁龍, 蛋白質結構預測實驗指南, 2010.
[77] F. Kiefer, K. Arnold, M. Kunzli, L. Bordoli, and T. Schwede, "The SWISS-MODEL Repository and associated resources," Nucleic Acids Res, vol. 37, pp. D387-92, Jan 2009.
[78] D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. Berendsen, "GROMACS: fast, flexible, and free," J Comput Chem, vol. 26, pp. 1701-18, Dec 2005.
[79] C. Kutzner, D. van der Spoel, M. Fechner, E. Lindahl, U. W. Schmitt, B. L. de Groot, et al., "Speeding up parallel GROMACS on high-latency networks," J Comput Chem, vol. 28, pp. 2075-84, Sep 2007.
[80] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, and J. Hermans, "Interaction models for water in relation to protein hydration," Intermolecular Forces, pp. 331-342, // 1981.
[81] J.-P. Ryckaert, G. Ciccotti, and H. Berendsen, "Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes," Journal of Computational Physics, vol. 23, pp. 327-341, 03// 1977.
[82] B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije, "LINCS: A linear constraint solver for molecular simulations," Journal of Computational Chemistry, vol. 18, pp. 1463-1472, 1997.
[83] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, "A Smooth Particle Mesh Ewald Method," Journal of Chemical Physics, vol. 103, pp. 8577-8593, Nov 15 1995.
[84] W. Kabsch and C. Sander, "Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features," Biopolymers, vol. 22, pp. 2577-637, Dec 1983.
[85] W. Humphrey, A. Dalke, and K. Schulten, "VMD: visual molecular dynamics," J Mol Graph, vol. 14, pp. 33-8, 27-8, Feb 1996.
[86] C. Wu and J. E. Shea, "Coarse-grained models for protein aggregation," Curr Opin Struct Biol, vol. 21, pp. 209-20, Apr 2011.
[87] A. C. Kalli, B. A. Hall, I. D. Campbell, and M. S. Sansom, "A helix heterodimer in a lipid bilayer: prediction of the structure of an integrin transmembrane domain via multiscale simulations," Structure, vol. 19, pp. 1477-84, Oct 12 2011.
[88] A. C. Kalli, I. D. Campbell, and M. S. Sansom, "Multiscale simulations suggest a mechanism for integrin inside-out activation," Proc Natl Acad Sci U S A, vol. 108, pp. 11890-5, Jul 19 2011.
[89] A. Y. Shih, A. Arkhipov, P. L. Freddolino, and K. Schulten, "Coarse grained protein-lipid model with application to lipoprotein particles," J Phys Chem B, vol. 110, pp. 3674-84, Mar 2 2006.
[90] V. Tozzini, "Coarse-grained models for proteins," Curr Opin Struct Biol, vol. 15, pp. 144-50, Apr 2005.
[91] S. J. Marrink and D. P. Tieleman, "Perspective on the Martini model," Chem Soc Rev, May 24 2013.
[92] S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. de Vries, "The MARTINI force field: coarse grained model for biomolecular simulations," J Phys Chem B, vol. 111, pp. 7812-24, Jul 12 2007.
[93] L. Monticelli, S. K. Kandasamy, X. Periole, R. G. Larson, D. P. Tieleman, and S. J. Marrink, "The MARTINI coarse-grained force field: Extension to proteins," Journal of Chemical Theory and Computation, vol. 4, pp. 819-834, May 2008.
[94] A. Aguzzi and A. M. Calella, "Prions: protein aggregation and infectious diseases," Physiol Rev, vol. 89, pp. 1105-52, Oct 2009.
[95] J. R. Silveira, G. J. Raymond, A. G. Hughson, R. E. Race, V. L. Sim, S. F. Hayes, et al., "The most infectious prion protein particles," Nature, vol. 437, pp. 257-261, Sep 8 2005.
[96] S. T. Larda, K. Simonetti, M. S. Al-Abdul-Wahid, S. Sharpe, and R. S. Prosser, "Dynamic Equilibria between Monomeric and Oligomeric Misfolded States of the Mammalian Prion Protein Measured by 19F NMR," Journal of the American Chemical Society, 2013.