| 研究生: |
黃芷妤 Huang, Jhih-Yu |
|---|---|
| 論文名稱: |
鋁合金中第二相粒子對晶粒成長抑制效應之細胞自動機模擬 Cellular Automata Modeling of Grain Growth Inhibition by Second Phase Particles in Aluminum Alloys |
| 指導教授: |
郭瑞昭
Kuo, Jui-Chao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 170 |
| 中文關鍵詞: | 晶粒長大 、細胞自動機模擬 、第二相粒子 、鋁合金 、釘扎效應 |
| 外文關鍵詞: | Grain growth, Cellular Automaton, Simulation, Second phase particle, Aluminum alloy, Pinning effect |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] Hillert, M., On the theory of normal and abnormal grain growth. Acta metallurgica, 1965. 13(3): p. 227-238.
[2] Humphreys, F.J. and Hatherly, M., Recrystallization and related annealing phenomena. 2012: elsevier.
[3] Holm, E.A., Miodownik, M.A., and Rollett, A.D., On abnormal subgrain growth and the origin of recrystallization nuclei. Acta Materialia, 2003. 51(9): p. 2701-2716.
[4] Thompson, C.V., Grain growth in thin films. Annual review of materials science, 1990. 20(1): p. 245-268.
[5] Doherty, R., Hughes, D., Humphreys, F., Jonas, J.J., Jensen, D.J., Kassner, M., King, W., McNelley, T., McQueen, H., and Rollett, A., Current issues in recrystallization: a review. Materials Science and Engineering: A, 1997. 238(2): p. 219-274.
[6] Gottstein, G. and Shvindlerman, L.S., Grain boundary migration in metals: thermodynamics, kinetics, applications. 2009: CRC press.
[7] Burke, J. and Turnbull, D., Recrystallization and grain growth. Progress in metal physics, 1952. 3: p. 220-292.
[8] Feltham, P., Grain growth in metals. Acta metallurgica, 1957. 5(2): p. 97-105.
[9] Sutton, A.P., Interfaces in crystalline materials. Monographs on the Physice and Chemistry of Materials, 1995: p. 414-423.
[10] Engler, O., Zaefferer, S., and Randle, V., Introduction to texture analysis: macrotexture, microtexture, and orientation mapping. 2024: CRC press.
[11] Rollett, A. and Mullins, W., On the growth of abnormal grains. Scripta materialia, 1997. 36(9).
[12] Holm, E.A., Hassold, G.N., and Miodownik, M.A., On misorientation distribution evolution during anisotropic grain growth. Acta Materialia, 2001. 49(15): p. 2981-2991.
[13] Smith, C., Grains, phases and interfaces: As interpretation of microstructure: Transactions of the American Institute of Mining and Metallurgical Engineers, v. 15. 1948.
[14] Gladman, T., On the theory of the effect of precipitate particles on grain growth in metals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1966. 294(1438): p. 298-309.
[15] Porter, D.A. and Easterling, K.E., Phase transformations in metals and alloys (revised reprint). 2009: CRC press.
[16] Greer, A.L., Cooper, P.S., Meredith, M.W., Schneider, W., Schumacher, P., Spittle, J.A., and Tronche, A., Grain refinement of aluminium alloys by inoculation. Advanced Engineering Materials, 2003. 5(1‐2): p. 81-91.
[17] Huang, K., Logé, R., and Marthinsen, K., On the sluggish recrystallization of a cold-rolled Al–Mn–Fe–Si alloy. Journal of Materials Science, 2016. 51(3): p. 1632-1643.
[18] PA, M., Ferry, M., and Chandra, T., Five decades of the Zener equation. ISIJ international, 1998. 38(9): p. 913-924.
[19] Bignon, M. and Bernacki, M., Particle pinning during grain growth—A new analytical model for predicting the mean limiting grain size but also grain size heterogeneity in a 2D polycrystalline context. Acta Materialia, 2024. 277: p. 120174.
[20] Chang, K., Feng, W., and Chen, L.-Q., Effect of second-phase particle morphology on grain growth kinetics. Acta Materialia, 2009. 57(17): p. 5229-5236.
[21] Nes, E., Ryum, N., and Hunderi, O., On the Zener drag. Acta metallurgica, 1985. 33(1): p. 11-22.
[22] Maalekian, M., Radis, R., Militzer, M., Moreau, A., and Poole, W., In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyed steel. Acta Materialia, 2012. 60(3): p. 1015-1026.
[23] Gu, Y., Tian, P., Wang, X., Han, X.-l., Liao, B., and Xiao, F.-r., Non-isothermal prior austenite grain growth of a high-Nb X100 pipeline steel during a simulated welding heat cycle process. Materials & Design, 2016. 89: p. 589-596.
[24] Luo, H., Liu, X., Lu, C., Cao, J., Yang, Y., Xiong, X., and Wang, C., Effect of Zr on static recrystallization of deformed austenite and strain-induced precipitation in Ti microalloyed steel. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2024. 238(8): p. 1395-1406.
[25] Shahandeh, S. and Militzer, M., Grain boundary curvature and grain growth kinetics with particle pinning. Philosophical Magazine, 2013. 93(24): p. 3231-3247.
[26] Hirsch, J. and Al-Samman, T., Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Materialia, 2013. 61(3): p. 818-843.
[27] Humphreys, F., Recrystallization mechanisms in two-phase alloys. Metal Science, 1979. 13(3-4): p. 136-145.
[28] Han, F., Tang, B., Kou, H., Li, J., and Feng, Y., Cellular automata simulations of grain growth in the presence of second-phase particles. Modelling and Simulation in Materials Science and Engineering, 2015. 23(6): p. 065010.
[29] Raghavan, S. and Sahay, S.S., Modeling the grain growth kinetics by cellular automaton. Materials Science and Engineering: A, 2007. 445: p. 203-209.
[30] Mason, J., Grain boundary energy and curvature in Monte Carlo and cellular automata simulations of grain boundary motion. Acta materialia, 2015. 94: p. 162-171.
[31] Zhou, W.Q., Gao, Y.J., Liu, Y., Luo, Z.R., and Huang, C.G., Phase Field Model for Grain Growth with Second-Phase Particles of Stick Shape. Advanced Materials Research, 2013. 741: p. 3-6.
[32] Von Neumann, J. and Burks, A.W., Theory of self-reproducing automata. IEEE Transactions on Neural Networks, 1966. 5(1): p. 3-14.
[33] Wolfram, S., Statistical mechanics of cellular automata. Reviews of modern physics, 1983. 55(3): p. 601.
[34] Bandini, S., Mauri, G., and Serra, R., Cellular automata: From a theoretical parallel computational model to its application to complex systems. Parallel Computing, 2001. 27(5): p. 539-553.
[35] Raabe, D., Cellular automata in materials science with particular reference to recrystallization simulation. Annual review of materials research, 2002. 32(1): p. 53-76.
[36] Geiger, J., Roósz, A., and Barkóczy, P., Simulation of grain coarsening in two dimensions by cellular-automaton. Acta materialia, 2001. 49(4): p. 623-629.
[37] Raabe, D., Challenges in computational materials science. Advanced Materials, 2002. 14(9): p. 639-650.
[38] Raabe, D. and Hantcherli, L., 2D cellular automaton simulation of the recrystallization texture of an IF sheet steel under consideration of Zener pinning. Computational Materials Science, 2005. 34(4): p. 299-313.
[39] Argon, A., Strengthening mechanisms in crystal plasticity. Vol. 4. 2007: OUP Oxford.
[40] Raabe, D., Computational materials science-the simulation of materials microstructures and properties. 1998.
[41] Steinbach, I., Phase-field models in materials science. Modelling and simulation in materials science and engineering, 2009. 17(7): p. 073001.
[42] Tallon, J. and Wolfenden, A., Temperature dependence of the elastic constants of aluminum. Journal of Physics and Chemistry of Solids, 1979. 40(11): p. 831-837.
[43] Brown, A. and Ashby, M., Correlations for diffusion constants. Acta Metallurgica, 1980. 28(8): p. 1085-1101.
[44] Winning, M., Gottstein, G., and Shvindlerman, L., Stress induced grain boundary motion. Acta materialia, 2001. 49(2): p. 211-219.
[45] Kremeyer, K., Cellular automata investigations of binary solidification. Journal of Computational Physics, 1998. 142(1): p. 243-263.
[46] Li, Z., Wang, J., and Huang, H., Grain boundary curvature based 2D cellular automata simulation of grain coarsening. Journal of Alloys and Compounds, 2019. 791: p. 411-422.
[47] Zheng, C., Raabe, D., and Li, D., Prediction of post-dynamic austenite-to-ferrite transformation and reverse transformation in a low-carbon steel by cellular automaton modeling. Acta Materialia, 2012. 60(12): p. 4768-4779.
[48] Zhu, G., Kang, Y., Lu, C., and Li, S., Microstructure evolution of cold‐rolled dual phase steel simulated by cellular automata. steel research international, 2014. 85(6): p. 1035-1046.
[49] Read, W.T. and Shockley, W., Dislocation models of crystal grain boundaries. Physical review, 1950. 78(3): p. 275.
[50] Wolf, D., A read-shockley model for high-angle grain boundaries. Scripta metallurgica, 1989. 23(10): p. 1713-1718.
[51] Huda, Z. and Zaharinie, T., Kinetics of grain growth in 2024-T3: An aerospace aluminum alloy. Journal of alloys and compounds, 2009. 478(1-2): p. 128-132.
[52] Huda, Z. Influence of particle mechanisms on kinetics of grain growth in a P/M superalloy. in Materials Science Forum. 2004. Trans Tech Publ.
[53] Lin, F., Sitko, M., Madej, L., and Delannay, L., Non-uniform grain boundary migration during static recrystallization: A cellular automaton study. Metallurgical and Materials Transactions A, 2022. 53(5): p. 1630-1644.
[54] Shahani, A., Walter, K., Zhang, J., Ludwig, W., Jensen, D.J., and Zhang, Y., The evolution of intergranular networks during grain growth and its effect on percolation behavior. Acta Materialia, 2024. 274: p. 119987.
[55] Specht, E., Goyal, A., and Kroeger, D., Scaling of percolative current flow to long lengths in biaxiallytextured conductors. Superconductor Science and Technology, 2000. 13(5): p. 592.
校內:2030-07-25公開