簡易檢索 / 詳目顯示

研究生: 黃芷妤
Huang, Jhih-Yu
論文名稱: 鋁合金中第二相粒子對晶粒成長抑制效應之細胞自動機模擬
Cellular Automata Modeling of Grain Growth Inhibition by Second Phase Particles in Aluminum Alloys
指導教授: 郭瑞昭
Kuo, Jui-Chao
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 170
中文關鍵詞: 晶粒長大細胞自動機模擬第二相粒子鋁合金釘扎效應
外文關鍵詞: Grain growth, Cellular Automaton, Simulation, Second phase particle, Aluminum alloy, Pinning effect
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I Extended Abstract II 致謝 XVIII 目錄 XXI 表目錄 XXV 圖目錄 XXVI 第一章 前言 1 第二章 文獻回顧 3 2.1 晶粒生長理論 3 2.1.1 再結晶與晶粒成長 3 2.1.2 晶粒成長理論與動力學描述 6 2.1.3 晶界遷移驅動力分析 8 2.2 第二相粒子釘紮效應(Pinning Effect) 9 2.2.1 Zener釘紮理論與分析 9 2.2.2 不同釘紮壓力理論模型整理 12 2.2.3 釘紮效應對晶粒成長的影響 14 2.2.4 晶界-粒子交互作用的數值模擬研究進展 16 2.3 細胞自動機模型 17 2.3.1 基本原理與發展歷程 17 2.3.2 CA方法於晶粒成長研究之應用 19 第三章 晶粒摻雜成長數值模擬 21 3.1細胞自動機 (CA) 模型建立與數值方法 21 3.1.1 模型基本設定與假設條件 21 3.1.2 晶界遷移率計算方法 25 3.1.3 曲率計算方法 27 3.1.4 界面能計算方式 29 3.2 第二相粒子釘紮模型設計與實施 30 3.2.1 初始結構生成 30 3.2.2 Point Pinning模型 31 3.2.3 Neighbor Pinning模型 33 3.2.4 Boundary Pinning模型 35 3.3 模擬結果分析方法 37 3.3.1 晶粒尺寸分布分析方法 37 3.3.2 晶界遷移動力學分析方法 39 3.3.3 三重點分析方法 41 第四章 數值模擬結果 43 4.1曲率因子對晶粒成長之影響 43 4.1.1 無曲率驅動模型 43 4.1.2 曲率驅動模型 49 4.2不同釘紮模型下晶粒成長模擬結果 53 4.2.1 Point Pinning模型結果 54 4.2.2 Neighbor Pinning模型結果 68 4.2.3 Boundary Pinning模型結果 82 4.3 摻雜二次相之粗化動力學 95 第五章 討論 101 5.1 曲率對晶粒生長行為的影響 101 5.1.1 無曲率模型異常生長 101 5.1.2 曲率模型自發粗化 105 5.2 不同晶界遷移率假設造成之微觀結構演化 106 5.2.1 晶粒尺寸變化 106 5.2.2 晶界粗糙度 110 5.2.3 多尺度界面形貌 114 5.3 釘紮力對晶粒生長行為之影響 117 5.4 Neighbor Pinning模型改進 119 5.5 Boundary Pinning模型改進 124 第六章 結論 127 參考文獻 130

    [1] Hillert, M., On the theory of normal and abnormal grain growth. Acta metallurgica, 1965. 13(3): p. 227-238.
    [2] Humphreys, F.J. and Hatherly, M., Recrystallization and related annealing phenomena. 2012: elsevier.
    [3] Holm, E.A., Miodownik, M.A., and Rollett, A.D., On abnormal subgrain growth and the origin of recrystallization nuclei. Acta Materialia, 2003. 51(9): p. 2701-2716.
    [4] Thompson, C.V., Grain growth in thin films. Annual review of materials science, 1990. 20(1): p. 245-268.
    [5] Doherty, R., Hughes, D., Humphreys, F., Jonas, J.J., Jensen, D.J., Kassner, M., King, W., McNelley, T., McQueen, H., and Rollett, A., Current issues in recrystallization: a review. Materials Science and Engineering: A, 1997. 238(2): p. 219-274.
    [6] Gottstein, G. and Shvindlerman, L.S., Grain boundary migration in metals: thermodynamics, kinetics, applications. 2009: CRC press.
    [7] Burke, J. and Turnbull, D., Recrystallization and grain growth. Progress in metal physics, 1952. 3: p. 220-292.
    [8] Feltham, P., Grain growth in metals. Acta metallurgica, 1957. 5(2): p. 97-105.
    [9] Sutton, A.P., Interfaces in crystalline materials. Monographs on the Physice and Chemistry of Materials, 1995: p. 414-423.
    [10] Engler, O., Zaefferer, S., and Randle, V., Introduction to texture analysis: macrotexture, microtexture, and orientation mapping. 2024: CRC press.
    [11] Rollett, A. and Mullins, W., On the growth of abnormal grains. Scripta materialia, 1997. 36(9).
    [12] Holm, E.A., Hassold, G.N., and Miodownik, M.A., On misorientation distribution evolution during anisotropic grain growth. Acta Materialia, 2001. 49(15): p. 2981-2991.
    [13] Smith, C., Grains, phases and interfaces: As interpretation of microstructure: Transactions of the American Institute of Mining and Metallurgical Engineers, v. 15. 1948.
    [14] Gladman, T., On the theory of the effect of precipitate particles on grain growth in metals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1966. 294(1438): p. 298-309.
    [15] Porter, D.A. and Easterling, K.E., Phase transformations in metals and alloys (revised reprint). 2009: CRC press.
    [16] Greer, A.L., Cooper, P.S., Meredith, M.W., Schneider, W., Schumacher, P., Spittle, J.A., and Tronche, A., Grain refinement of aluminium alloys by inoculation. Advanced Engineering Materials, 2003. 5(1‐2): p. 81-91.
    [17] Huang, K., Logé, R., and Marthinsen, K., On the sluggish recrystallization of a cold-rolled Al–Mn–Fe–Si alloy. Journal of Materials Science, 2016. 51(3): p. 1632-1643.
    [18] PA, M., Ferry, M., and Chandra, T., Five decades of the Zener equation. ISIJ international, 1998. 38(9): p. 913-924.
    [19] Bignon, M. and Bernacki, M., Particle pinning during grain growth—A new analytical model for predicting the mean limiting grain size but also grain size heterogeneity in a 2D polycrystalline context. Acta Materialia, 2024. 277: p. 120174.
    [20] Chang, K., Feng, W., and Chen, L.-Q., Effect of second-phase particle morphology on grain growth kinetics. Acta Materialia, 2009. 57(17): p. 5229-5236.
    [21] Nes, E., Ryum, N., and Hunderi, O., On the Zener drag. Acta metallurgica, 1985. 33(1): p. 11-22.
    [22] Maalekian, M., Radis, R., Militzer, M., Moreau, A., and Poole, W., In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyed steel. Acta Materialia, 2012. 60(3): p. 1015-1026.
    [23] Gu, Y., Tian, P., Wang, X., Han, X.-l., Liao, B., and Xiao, F.-r., Non-isothermal prior austenite grain growth of a high-Nb X100 pipeline steel during a simulated welding heat cycle process. Materials & Design, 2016. 89: p. 589-596.
    [24] Luo, H., Liu, X., Lu, C., Cao, J., Yang, Y., Xiong, X., and Wang, C., Effect of Zr on static recrystallization of deformed austenite and strain-induced precipitation in Ti microalloyed steel. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2024. 238(8): p. 1395-1406.
    [25] Shahandeh, S. and Militzer, M., Grain boundary curvature and grain growth kinetics with particle pinning. Philosophical Magazine, 2013. 93(24): p. 3231-3247.
    [26] Hirsch, J. and Al-Samman, T., Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Materialia, 2013. 61(3): p. 818-843.
    [27] Humphreys, F., Recrystallization mechanisms in two-phase alloys. Metal Science, 1979. 13(3-4): p. 136-145.
    [28] Han, F., Tang, B., Kou, H., Li, J., and Feng, Y., Cellular automata simulations of grain growth in the presence of second-phase particles. Modelling and Simulation in Materials Science and Engineering, 2015. 23(6): p. 065010.
    [29] Raghavan, S. and Sahay, S.S., Modeling the grain growth kinetics by cellular automaton. Materials Science and Engineering: A, 2007. 445: p. 203-209.
    [30] Mason, J., Grain boundary energy and curvature in Monte Carlo and cellular automata simulations of grain boundary motion. Acta materialia, 2015. 94: p. 162-171.
    [31] Zhou, W.Q., Gao, Y.J., Liu, Y., Luo, Z.R., and Huang, C.G., Phase Field Model for Grain Growth with Second-Phase Particles of Stick Shape. Advanced Materials Research, 2013. 741: p. 3-6.
    [32] Von Neumann, J. and Burks, A.W., Theory of self-reproducing automata. IEEE Transactions on Neural Networks, 1966. 5(1): p. 3-14.
    [33] Wolfram, S., Statistical mechanics of cellular automata. Reviews of modern physics, 1983. 55(3): p. 601.
    [34] Bandini, S., Mauri, G., and Serra, R., Cellular automata: From a theoretical parallel computational model to its application to complex systems. Parallel Computing, 2001. 27(5): p. 539-553.
    [35] Raabe, D., Cellular automata in materials science with particular reference to recrystallization simulation. Annual review of materials research, 2002. 32(1): p. 53-76.
    [36] Geiger, J., Roósz, A., and Barkóczy, P., Simulation of grain coarsening in two dimensions by cellular-automaton. Acta materialia, 2001. 49(4): p. 623-629.
    [37] Raabe, D., Challenges in computational materials science. Advanced Materials, 2002. 14(9): p. 639-650.
    [38] Raabe, D. and Hantcherli, L., 2D cellular automaton simulation of the recrystallization texture of an IF sheet steel under consideration of Zener pinning. Computational Materials Science, 2005. 34(4): p. 299-313.
    [39] Argon, A., Strengthening mechanisms in crystal plasticity. Vol. 4. 2007: OUP Oxford.
    [40] Raabe, D., Computational materials science-the simulation of materials microstructures and properties. 1998.
    [41] Steinbach, I., Phase-field models in materials science. Modelling and simulation in materials science and engineering, 2009. 17(7): p. 073001.
    [42] Tallon, J. and Wolfenden, A., Temperature dependence of the elastic constants of aluminum. Journal of Physics and Chemistry of Solids, 1979. 40(11): p. 831-837.
    [43] Brown, A. and Ashby, M., Correlations for diffusion constants. Acta Metallurgica, 1980. 28(8): p. 1085-1101.
    [44] Winning, M., Gottstein, G., and Shvindlerman, L., Stress induced grain boundary motion. Acta materialia, 2001. 49(2): p. 211-219.
    [45] Kremeyer, K., Cellular automata investigations of binary solidification. Journal of Computational Physics, 1998. 142(1): p. 243-263.
    [46] Li, Z., Wang, J., and Huang, H., Grain boundary curvature based 2D cellular automata simulation of grain coarsening. Journal of Alloys and Compounds, 2019. 791: p. 411-422.
    [47] Zheng, C., Raabe, D., and Li, D., Prediction of post-dynamic austenite-to-ferrite transformation and reverse transformation in a low-carbon steel by cellular automaton modeling. Acta Materialia, 2012. 60(12): p. 4768-4779.
    [48] Zhu, G., Kang, Y., Lu, C., and Li, S., Microstructure evolution of cold‐rolled dual phase steel simulated by cellular automata. steel research international, 2014. 85(6): p. 1035-1046.
    [49] Read, W.T. and Shockley, W., Dislocation models of crystal grain boundaries. Physical review, 1950. 78(3): p. 275.
    [50] Wolf, D., A read-shockley model for high-angle grain boundaries. Scripta metallurgica, 1989. 23(10): p. 1713-1718.
    [51] Huda, Z. and Zaharinie, T., Kinetics of grain growth in 2024-T3: An aerospace aluminum alloy. Journal of alloys and compounds, 2009. 478(1-2): p. 128-132.
    [52] Huda, Z. Influence of particle mechanisms on kinetics of grain growth in a P/M superalloy. in Materials Science Forum. 2004. Trans Tech Publ.
    [53] Lin, F., Sitko, M., Madej, L., and Delannay, L., Non-uniform grain boundary migration during static recrystallization: A cellular automaton study. Metallurgical and Materials Transactions A, 2022. 53(5): p. 1630-1644.
    [54] Shahani, A., Walter, K., Zhang, J., Ludwig, W., Jensen, D.J., and Zhang, Y., The evolution of intergranular networks during grain growth and its effect on percolation behavior. Acta Materialia, 2024. 274: p. 119987.
    [55] Specht, E., Goyal, A., and Kroeger, D., Scaling of percolative current flow to long lengths in biaxiallytextured conductors. Superconductor Science and Technology, 2000. 13(5): p. 592.

    無法下載圖示 校內:2030-07-25公開
    校外:2030-07-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE