簡易檢索 / 詳目顯示

研究生: 蔡孟哲
Tsai, Meng-Che
論文名稱: 全外顯子定序應用與實驗驗證來找尋性發育異常致病突變
Whole Exome Sequencing Application and Experimental Validation to Identify Causative Mutations in Disorder of Sex Development
指導教授: 陳芃潔
Chen, Peng-Chieh
謝奇璋
Shieh, Chi-Chang
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 91
中文關鍵詞: 性發育異常/變異次世代定序功能性研究性腺發育不全PBX1基因
外文關鍵詞: Disorders/differences of sex development, next-generation sequencing, functional study, gonadal dysgenesis, PBX1 gene
相關次數: 點閱:44下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 次世代定序是一項新興技術,主要用於DNA和RNA定序以及與生物資訊學結合使用的變異/突變檢測。基於次世代定序技術的全外顯子定序可以對大部分編碼基因組進行定序,並徹底革新基因分析。性發育異常/差異(DSD)是一群人類先天性狀況,其特徵是染色體、性腺和/或解剖性別發育不典型。臨床表現差異很大,而有些患者可能需要在生命早期進行性別指派的醫療和手術介入。使用全外顯子定序合併生物資訊計算,可以對與 DSD發病機制相關的候選基因變異進行優先排序。我們建立了根據全外顯子定序的可行診斷流程,於25名DSD患者中辨識出15名的遺傳病因:7名單獨性DSD患者被發現存在AR、MAP3K1 和FLNA 基因的致病變異,另外8名患者除男性化不足的生殖器外還表現出其他表型,可符合CHARGE症候群(CHD7)、Robinow症候群(DVL1)、低促性腺激素性性腺功能低下症(FGFR1、LHX4 和SEMA3A)、以及先天性腎臟和泌尿道症候群(PBX1)。而為了進一步驗證PBX1 c.710G>C (p.R237T) 的功能影響,我們產生穩定的誘導型Flp-In T-REx™ HEK293 細胞株分別由攜帶野生型(WT)或突變體PBX1的質體轉染。功能分析顯示,存在於核定位序列內的這種變異降低蛋白質穩定性並阻礙核轉位。透過誘導表現Flp-In PBX1 p.R237T所產生的增殖抑制作用不如Flp-In PBX1 WT明顯,但細胞黏附作用沒有差異。RNA定序分析發現Flp-In HEK293 PBX1 WT和p.R237T細胞之間存在多個差異表現基因,其中2個DSD相關基因上升(MAP3K4和EMX2),2個基因下降(KISS1R和HOXA13)。我們的結果強調全外顯子定序在DSD基因診斷中的臨床實用性。功能研究證明了PBX1 c.710G>C (p.R237T)的有害後果,使雙向分化潛能的性腺傾向於卵巢分化。

    Next-generation sequencing (NGS) is an emerging technology that is principally used for DNA and RNA sequencing and variant/mutation detection if combined with the use of bioinformatics. Whole-exome sequencing (WES) based on NGS techniques allows for most of the coding genome to be sequenced and has revolutionized genetic analysis. Disorders/Differences of sex development (DSDs) are a group of human congenital conditions characterized by atypical development of the chromosomal, gonadal and/or anatomic sex. The clinical presentations vary considerably, while some patients may require medical and surgical interventions for gender assignment in early life. Using WES combined with bioinformatics computation, the candidate genetic variants can be prioritized in association with DSD pathogenesis. We established a feasible diagnostic pipeline based on WES to identify genetic etiologies for 15 out of 25 recruited patients with DSDs: 7 patients with isolated DSD were found to have causative variants in AR, MAP3K1, and FLNA genes, and the other 8 patients presenting additional phenotypes beyond undervirilized genitalia were compatible with CHARGE syndrome (CHD7), Robinow syndrome (DVL1), hypogonadotropic hypogonadism (FGFR1, LHX4, and SEMA3A), and congenital anomalies of kidney and urinary tract syndrome (PBX1). To further validate the functional impacts of PBX1 c.710G>C (p.R237T), We generated stable, inducible Flp-In T-REx™ HEK293 cell lines transfected with plasmids carrying either wild-type (WT) or mutant PBX1. Functional analysis showed that this variant residing within the nuclear localization sequence reduced protein stability and hampered nuclear translocation. The proliferation suppression through the induced expression of Flp-In PBX1 p.R237T was less prominent than that of Flp-In PBX1 WT, while the cell adhesion was not different. RNA sequencing analysis found several differentially expressed genes between Flp-In HEK293 PBX1 WT and p.R237T cells, with three DSD-related genes upregulated (MAP3K4 and EMX2) and two genes downregulated (KISS1R and HOXA13). Our results highlighted the clinical utility of WES in the genetic diagnosis of DSDs. The functional investigations demonstrated the deleterious consequences of PBX1 c.710G>C (p.R237T), tilting biopotential gonads toward pro-ovarian differentiation.

    1. Introduction 1 1.1 Next-generation Sequencing and Its Application 1 1.1.1 Whole-exome Sequencing 1 1.1.2 Functional Annotation of Genetic Variants 1 1.2 Sex Development and Its Disorders/Differences 2 1.2.1 Physiology of Sex Development 2 1.2.2 Disorders/Differences of Sex Development and Its Diagnostic Challenges 3 1.3 PBX1 Gene and Its Role in Sex Development 3 1.3.1 PBX1 as a Causative Gene of Disorders/Differences of Sex Development 4 1.3.2 PBX1 Involved in the Development of Genitalia 4 2. Objectives 6 2.1 Specific Aims 6 3. Materials and Methods 7 3.1 Patient Recruitment 7 3.2 Exome Capture Hybridization and Sequencing 7 3.3 Two-phase Diagnostic Approach 8 3.4 Computational Modeling 9 3.5 Segregation Analysis and Confirmatory Sequencing 9 3.6 Constructing Stable Mutant Cell Lines 10 3.7 Examining Expression Efficiency, Protein Stability, and Western Blotting of Mutant Alleles 10 3.8 Investigating Cellular Functions of Mutant Cell Lines 11 3.9 Visualizing Subcellular Localization of Mutant Proteins 12 3.10 Characterizing the Transcriptomic Profile of Mutant Alleles 12 4. Results 14 4.1 Patient Cohort 14 4.2 Case Series of Ciliopathies 14 4.3 Case Series of Collagenopathies 15 4.4 Genes Implicated in Isolated Disorders/Differences of Sex Development 16 4.5 Genes Implicated in Syndromic Disorders/Differences of Sex Development 17 4.6 PBX1 p.R237T Affected Expression, Protein Stability, and Subcellular Distribution 19 4.7 RNA Sequencing Revealed Multiple Differentially Expressed Genes Related to Sex Development between Cell Lines 19 4.8 Expression of PBX1 Inhibited HEK293 Proliferation but Not Adhesion 20 5. Discussion 21 5.1 Feasibility of Whole-Exome Sequencing 21 5.2 Remarkable Findings in Case Series of Ciliopathies 21 5.3 Remarkable Findings in Case Series of Collagenopathies 22 5.4 Remarkable Findings in Case Series of Disorders/Differences of Sex Development 23 5.5 Functional Validation of PBX1 p.R237T 28 5.6 Transcriptomic Profiling 29 5.7 Limitations 31 5.8 Conclusions and Future Directions 32 6. References 34 7. Tables 48 8. Figures 58

    1. Qin D. Next-generation sequencing and its clinical application. Cancer biology & medicine. 2019;16(1):4-10.
    2. Lalani SR. Current Genetic Testing Tools in Neonatal Medicine. Pediatrics and neonatology. 2017;58(2):111-121.
    3. Knopp C, Rudnik-Schoneborn S, Eggermann T, et al. Syndromic ciliopathies: From single gene to multi gene analysis by SNP arrays and next generation sequencing. Molecular and cellular probes. 2015.
    4. Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nature reviews Genetics. 2013;14(10):681-691.
    5. Pruitt KD, Harrow J, Harte RA, et al. The consensus coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes. Genome research. 2009;19(7):1316-1323.
    6. Facio FM, Eidem H, Fisher T, et al. Intentions to receive individual results from whole-genome sequencing among participants in the ClinSeq study. European journal of human genetics : EJHG. 2013;21(3):261-265.
    7. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and indels. PloS one. 2012;7(10):e46688.
    8. Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nature methods. 2010;7(4):248-249.
    9. Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic acids research. 2003;31(13):3812-3814.
    10. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nature methods. 2014;11(4):361-362.
    11. Engeli RT, Rhouma BB, Sager CP, et al. Biochemical analyses and molecular modeling explain the functional loss of 17beta-hydroxysteroid dehydrogenase 3 mutant G133R in three Tunisian patients with 46, XY Disorders of Sex Development. The Journal of steroid biochemistry and molecular biology. 2016;155(Pt A):147-154.
    12. Byron SA, Van Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW. Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nature Reviews Genetics. 2016;17(5):257-271.
    13. Wilhelm D, Palmer S, Koopman P. Sex determination and gonadal development in mammals. Physiological reviews. 2007;87(1):1-28.
    14. Sekido R, Lovell-Badge R. Sex determination and SRY: down to a wink and a nudge? Trends in genetics : TIG. 2009;25(1):19-29.
    15. Schlessinger D, Garcia-Ortiz JE, Forabosco A, Uda M, Crisponi L, Pelosi E. Determination and stability of gonadal sex. Journal of andrology. 2010;31(1):16-25.
    16. Kremer H, Kraaij R, Toledo SP, et al. Male pseudohermaphroditism due to a homozygous missense mutation of the luteinizing hormone receptor gene. Nature genetics. 1995;9(2):160-164.
    17. Kourime M, Bryce J, Jiang J, Nixon R, Rodie M, Ahmed SF. An assessment of the quality of the I-DSD and the I-CAH registries - international registries for rare conditions affecting sex development. Orphanet journal of rare diseases. 2017;12(1):56.
    18. Maimoun L, Philibert P, Cammas B, et al. Phenotypical, biological, and molecular heterogeneity of 5alpha-reductase deficiency: an extensive international experience of 55 patients. The Journal of clinical endocrinology and metabolism. 2011;96(2):296-307.
    19. Hughes IA, Davies JD, Bunch TI, Pasterski V, Mastroyannopoulou K, MacDougall J. Androgen insensitivity syndrome. Lancet (London, England). 2012;380(9851):1419-1428.
    20. Hughes IA, Houk C, Ahmed SF, Lee PA. Consensus statement on management of intersex disorders. Archives of disease in childhood. 2006;91(7):554-563.
    21. Hughes IA. Consequences of the Chicago DSD Consensus: A Personal Perspective. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2015;47(5):394-400.
    22. Thyen U, Lanz K, Holterhus PM, Hiort O. Epidemiology and initial management of ambiguous genitalia at birth in Germany. Hormone research. 2006;66(4):195-203.
    23. Kutney K, Konczal L, Kaminski B, Uli N. Challenges in the diagnosis and management of disorders of sex development. Birth Defects Research Part C: Embryo Today: Reviews. 2016;108(4):293-308.
    24. Achermann JC, Domenice S, Bachega TA, Nishi MY, Mendonca BB. Disorders of sex development: effect of molecular diagnostics. Nature reviews Endocrinology. 2015;11(8):478-488.
    25. Rodriguez-Buritica D. Overview of genetics of disorders of sexual development. Current opinion in pediatrics. 2015;27(6):675-684.
    26. Albuisson J, Pêcheux C, Carel J-C, et al. Kallmann syndrome: 14 novel mutations in KAL1 and FGFR1 (KAL2). Human Mutation. 2005;25(1):98-99.
    27. Hiort O, Cools M, Springer A, et al. Addressing gaps in care of people with conditions affecting sex development and maturation. Nature Reviews Endocrinology. 2019;15(10):615-622.
    28. Persani L, Cools M, Ioakim S, et al. The genetic diagnosis of rare endocrine disorders of sex development and maturation: a survey among Endo-ERN centres. Endocrine connections. 2022;11(12).
    29. Le Tanno P, Breton J, Bidart M, et al. PBX1 haploinsufficiency leads to syndromic congenital anomalies of the kidney and urinary tract (CAKUT) in humans. Journal of medical genetics. 2017;54(7):502-510.
    30. Heidet L, Morinière V, Henry C, et al. Targeted Exome Sequencing Identifies PBX1 as Involved in Monogenic Congenital Anomalies of the Kidney and Urinary Tract. Journal of the American Society of Nephrology : JASN. 2017;28(10):2901-2914.
    31. Eozenou C, Bashamboo A, Bignon-Topalovic J, et al. The TALE homeodomain of PBX1 is involved in human primary testis-determination. Hum Mutat. 2019;40(8):1071-1076.
    32. Kia F, Sarafoglou K, Mooganayakanakote Siddappa A, Roberts KD. Partial gonadal dysgenesis associated with a pathogenic variant of PBX1 transcription factor. BMJ case reports. 2019;12(7).
    33. Mary L, Leclerc D, Labalme A, et al. Functional Assessment of a New PBX1 Variant in a 46,XY Fetus with Severe Syndromic Difference of Sexual Development through CRISPR-Cas9 Gene Editing. Genes. 2023;14(2).
    34. Mary L, Leclerc D, Gilot D, Belaud-Rotureau MA, Jaillard S. The TALE never ends: A comprehensive overview of the role of PBX1, a TALE transcription factor, in human developmental defects. Hum Mutat. 2022;43(9):1125-1148.
    35. Hu J, Yang H, Wang X, et al. A novel pathogenic variant c.262delA in PBX1 causing oligomeganephronia identified using whole-exome sequencing and a literature review. American journal of medical genetics Part A. 2023;191(12):2850-2855.
    36. Selleri L, Zappavigna V, Ferretti E. 'Building a perfect body': control of vertebrate organogenesis by PBX-dependent regulatory networks. Genes & development. 2019;33(5-6):258-275.
    37. Schnabel CA, Selleri L, Cleary ML. Pbx1 is essential for adrenal development and urogenital differentiation. Genesis (New York, NY : 2000). 2003;37(3):123-130.
    38. Moens CB, Selleri L. Hox cofactors in vertebrate development. Developmental biology. 2006;291(2):193-206.
    39. Hammer GD, Parker KL, Schimmer BP. Minireview: transcriptional regulation of adrenocortical development. Endocrinology. 2005;146(3):1018-1024.
    40. Wang FC, Zhang XN, Wu SX, He Z, Zhang LY, Yang QE. Loss of PBX1 function in Leydig cells causes testicular dysgenesis and male sterility. Cellular and molecular life sciences : CMLS. 2024;81(1):212.
    41. Garcia-Alonso L, Lorenzi V, Mazzeo CI, et al. Single-cell roadmap of human gonadal development. Nature. 2022;607(7919):540-547.
    42. Lichtenauer UD, Duchniewicz M, Kolanczyk M, et al. Pre-B-Cell Transcription Factor 1 and Steroidogenic Factor 1 Synergistically Regulate Adrenocortical Growth and Steroidogenesis. Endocrinology. 2007;148(2):693-704.
    43. Tsai MC, Chou YY, Lin SJ, Tsai LP. A novel SRD5A2 mutation in a Taiwanese newborn with ambiguous genitalia. The Kaohsiung journal of medical sciences. 2012;28(4):231-235.
    44. Chen SY, Lin SJ, Tsai LP, Chou YY. Sex-reversed acampomelic campomelic dysplasia with a homozygous deletion mutation in SOX9 gene. Urology. 2012;79(4):908-911.
    45. Lee IW, Chou YY, Hsu KF, et al. Complex chromosome rearrangement 46,XY, der(9)t(Y;9)(q12;p23) in a girl with sex reversal and mental retardation. Urology. 2011;77(5):1213-1216.
    46. Chang IF, Chien YH, Tsai WY, Lee NC. Russell-Silver syndrome presenting with ambiguous genitalia. Journal of the Formosan Medical Association = Taiwan yi zhi. 2016.
    47. Yu PH, Tsai MC, Chiang CT, Wang HY, Kuo PL. Novel mutation of MAP3K1 gene in 46,XY DSD with complete gonadal dysgenesis. Taiwanese journal of obstetrics & gynecology. 2022;61(5):903-905.
    48. Huang WY, Chen YF, Guo YJ, et al. Epidemiology of hypospadias and treatment trends in Taiwan: a nationwide study. The Journal of urology. 2011;185(4):1449-1454.
    49. Badano JL, Mitsuma N, Beales PL, Katsanis N. The ciliopathies: an emerging class of human genetic disorders. Annual review of genomics and human genetics. 2006;7:125-148.
    50. Carter EM, Raggio CL. Genetic and orthopedic aspects of collagen disorders. Current opinion in pediatrics. 2009;21(1):46-54.
    51. Forlino A, Marini JC. Osteogenesis imperfecta. Lancet (London, England). 2016;387(10028):1657-1671.
    52. Kuurila K, Kaitila I, Johansson R, Grénman R. Hearing loss in Finnish adults with osteogenesis imperfecta: a nationwide survey. The Annals of otology, rhinology, and laryngology. 2002;111(10):939-946.
    53. Forlino A, Cabral WA, Barnes AM, Marini JC. New perspectives on osteogenesis imperfecta. Nature reviews Endocrinology. 2011;7(9):540-557.
    54. Eggers S, Sadedin S, van den Bergen JA, et al. Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort. Genome Biol. 2016;17(1):243-243.
    55. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine : official journal of the American College of Medical Genetics. 2015;17(5):405-424.
    56. Tsai MC, Yu HW, Liu T, Chou YY, Chiou YY, Chen PC. Rare Compound Heterozygous Frameshift Mutations in ALMS1 Gene Identified Through Exome Sequencing in a Taiwanese Patient With Alström Syndrome. Frontiers in genetics. 2018;9:110.
    57. Nykamp K, Anderson M, Powers M, et al. Sherloc: a comprehensive refinement of the ACMG-AMP variant classification criteria. Genetics in medicine : official journal of the American College of Medical Genetics. 2017;19(10):1105-1117.
    58. Zhou X, Zheng W, Li Y, et al. I-TASSER-MTD: a deep-learning-based platform for multi-domain protein structure and function prediction. Nature protocols. 2022;17(10):2326-2353.
    59. Kufareva I, Abagyan R. Methods of protein structure comparison. Methods in molecular biology (Clifton, NJ). 2012;857:231-257.
    60. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic acids research. 2002;30(12):e57.
    61. van Dijk FS, Huizer M, Kariminejad A, et al. Complete COL1A1 allele deletions in osteogenesis imperfecta. Genetics in medicine : official journal of the American College of Medical Genetics. 2010;12(11):736-741.
    62. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship inference in genome-wide association studies. Bioinformatics (Oxford, England). 2010;26(22):2867-2873.
    63. O'Gorman S, Fox DT, Wahl GM. Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science (New York, NY). 1991;251(4999):1351-1355.
    64. Yao F, Svensjö T, Winkler T, Lu M, Eriksson C, Eriksson E. Tetracycline repressor, tetR, rather than the tetR-mammalian cell transcription factor fusion derivatives, regulates inducible gene expression in mammalian cells. Human gene therapy. 1998;9(13):1939-1950.
    65. Tsai MC, Chou YY, Li CY, et al. New Structural and Single Nucleotide Mutations in Type I and Type II Collagens in Taiwanese Children With Type I and Type II Collagenopathies. Frontiers in genetics. 2021;12:594285.
    66. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(43):15545-15550.
    67. Martinez de LaPiscina I, Flück CE. Genetics of human sexual development and related disorders. Current opinion in pediatrics. 2021;33(6):556-563.
    68. Chen M, Long X, Chen M, et al. Integration of single-cell transcriptome and chromatin accessibility of early gonads development among goats, pigs, macaques, and humans. Cell reports. 2022;41(5):111587.
    69. Taelman J, Czukiewska SM, Moustakas I, et al. Characterization of the human fetal gonad and reproductive tract by single-cell transcriptomics. Developmental cell. 2024;59(4):529-544.e525.
    70. Zogopoulos VL, Spaho K, Ntouka C, et al. TFBSPred: A functional transcription factor binding site prediction webtool for humans and mice. International Journal of Epigenetics. 2021;1(4):1-11.
    71. Pan YW, Ou TY, Chou YY, et al. Syndromic ciliopathy: a taiwanese single-center study. BMC medical genomics. 2024;17(1):106.
    72. Tsai MC, Weng YH, Lin YF, et al. Whole-Exome Sequencing Identified Rare Genetic Variants Associated with Undervirilized Genitalia in Taiwanese Pediatric Patients. Biomedicines. 2023;11(2).
    73. Ramirez F, Tanaka S, Bou-Gharios G. Transcriptional regulation of the human alpha2(I) collagen gene (COL1A2), an informative model system to study fibrotic diseases. Matrix Biol. 2006;25(6):365-372.
    74. Meng X, Long Y, Ren J, Wang G, Yin X, Li S. Ocular Characteristics of Patients With Bardet-Biedl Syndrome Caused by Pathogenic BBS Gene Variation in a Chinese Cohort. Front Cell Dev Biol. 2021;9:635216.
    75. Feng YA, Chen CY, Chen TT, et al. Taiwan Biobank: A rich biomedical research database of the Taiwanese population. Cell genomics. 2022;2(11):100197.
    76. Katsanis N, Ansley SJ, Badano JL, et al. Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science. 2001;293(5538):2256-2259.
    77. Abu-Safieh L, Al-Anazi S, Al-Abdi L, et al. In search of triallelism in Bardet-Biedl syndrome. Eur J Hum Genet. 2012;20(4):420-427.
    78. Smaoui N, Chaabouni M, Sergeev YV, et al. Screening of the eight BBS genes in Tunisian families: no evidence of triallelism. Invest Ophthalmol Vis Sci. 2006;47(8):3487-3495.
    79. Badano JL, Kim JC, Hoskins BE, et al. Heterozygous mutations in BBS1, BBS2 and BBS6 have a potential epistatic effect on Bardet-Biedl patients with two mutations at a second BBS locus. Hum Mol Genet. 2003;12(14):1651-1659.
    80. Bin J, Madhavan J, Ferrini W, Mok CA, Billingsley G, Heon E. BBS7 and TTC8 (BBS8) mutations play a minor role in the mutational load of Bardet-Biedl syndrome in a multiethnic population. Hum Mutat. 2009;30(7):E737-746.
    81. Perea-Romero I, Solarat C, Blanco-Kelly F, et al. Allelic overload and its clinical modifier effect in Bardet-Biedl syndrome. NPJ Genom Med. 2022;7(1):41.
    82. Hearn T, Renforth GL, Spalluto C, et al. Mutation of ALMS1, a large gene with a tandem repeat encoding 47 amino acids, causes Alström syndrome. Nature genetics. 2002;31(1):79-83.
    83. Girard D, Petrovsky N. Alström syndrome: insights into the pathogenesis of metabolic disorders. Nature reviews Endocrinology. 2011;7(2):77-88.
    84. Marshall JD, Hinman EG, Collin GB, et al. Spectrum of ALMS1 variants and evaluation of genotype-phenotype correlations in Alström syndrome. Hum Mutat. 2007;28(11):1114-1123.
    85. Joy T, Cao H, Black G, et al. Alstrom syndrome (OMIM 203800): a case report and literature review. Orphanet J Rare Dis. 2007;2:49.
    86. Titomanlio L, De Brasi D, Buoninconti A, et al. Alström syndrome: intrafamilial phenotypic variability in sibs with a novel nonsense mutation of the ALMS1 gene. Clin Genet. 2004;65(2):156-157.
    87. Pace JM, Wiese M, Drenguis AS, et al. Defective C-propeptides of the proalpha2(I) chain of type I procollagen impede molecular assembly and result in osteogenesis imperfecta. J Biol Chem. 2008;283(23):16061-16067.
    88. Raff ML, Craigen WJ, Smith LT, Keene DR, Byers PH. Partial COL1A2 gene duplication produces features of osteogenesis imperfecta and Ehlers-Danlos syndrome type VII. Human genetics. 2000;106(1):19-28.
    89. Kuivaniemi H, Sabol C, Tromp G, Sippola-Thiele M, Prockop DJ. A 19-base pair deletion in the pro-alpha 2(I) gene of type I procollagen that causes in-frame RNA splicing from exon 10 to exon 12 in a proband with atypical osteogenesis imperfecta and in his asymptomatic mother. The Journal of biological chemistry. 1988;263(23):11407-11413.
    90. Byers PH, Duvic M, Atkinson M, et al. Ehlers-Danlos syndrome type VIIA and VIIB result from splice-junction mutations or genomic deletions that involve exon 6 in the COL1A1 and COL1A2 genes of type I collagen. American journal of medical genetics. 1997;72(1):94-105.
    91. Acquarone E, Monacelli F, Borghi R, Nencioni A, Odetti P. Resistin: A reappraisal. Mech Ageing Dev. 2019;178:46-63.
    92. Philp AM, Collier RL, Grover LM, Davis ET, Jones SW. Resistin promotes the abnormal Type I collagen phenotype of subchondral bone in obese patients with end stage hip osteoarthritis. Sci Rep. 2017;7(1):4042.
    93. Thommesen L, Stunes AK, Monjo M, et al. Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism. J Cell Biochem. 2006;99(3):824-834.
    94. Orimo H. The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J Nippon Med Sch. 2010;77(1):4-12.
    95. Millan JL, Whyte MP. Alkaline Phosphatase and Hypophosphatasia. Calcif Tissue Int. 2016;98(4):398-416.
    96. Taillandier A, Domingues C, De Cazanove C, et al. Molecular diagnosis of hypophosphatasia and differential diagnosis by targeted Next Generation Sequencing. Mol Genet Metab. 2015;116(3):215-220.
    97. Baxter RM, Arboleda VA, Lee H, et al. Exome sequencing for the diagnosis of 46,XY disorders of sex development. The Journal of clinical endocrinology and metabolism. 2015;100(2):E333-344.
    98. Kim JH, Kang E, Heo SH, et al. Diagnostic yield of targeted gene panel sequencing to identify the genetic etiology of disorders of sex development. Molecular and cellular endocrinology. 2017;444:19-25.
    99. Dong Y, Yi Y, Yao H, et al. Targeted next-generation sequencing identification of mutations in patients with disorders of sex development. BMC medical genetics. 2016;17:23.
    100. Tang Y, Chen Y, Wang J, et al. Clinical characteristics and genetic expansion of 46,XY disorders of sex development children in a Chinese prospective study. Endocrine connections. 2023;12(10).
    101. Xu Y, Wang Y, Li N, et al. New insights from unbiased panel and whole-exome sequencing in a large Chinese cohort with disorders of sex development. European Journal of Endocrinology. 2019;181(3):311-323.
    102. Hughes LA, McKay-Bounford K, Webb EA, et al. Next generation sequencing (NGS) to improve the diagnosis and management of patients with disorders of sex development (DSD). Endocrine connections. 2019;8(2):100-110.
    103. Özalp Kızılay D, Özen S. Current Diagnostic Approaches in the Genetic Diagnosis of Disorders of Sex Development. Journal of clinical research in pediatric endocrinology. 2024.
    104. Mongan NP, Tadokoro-Cuccaro R, Bunch T, Hughes IA. Androgen insensitivity syndrome. Best practice & research Clinical endocrinology & metabolism. 2015;29(4):569-580.
    105. Su L, Cheng J, Yin X, et al. Clinical and molecular characteristics in 15 patients with androgen receptor gene mutations from South China. Andrologia. 2017;49(10).
    106. Kon M, Suzuki E, Dung VC, et al. Molecular basis of non-syndromic hypospadias: systematic mutation screening and genome-wide copy-number analysis of 62 patients. Human Reproduction. 2015;30(3):499-506.
    107. Bevan CL, Hughes IA, Patterson MN. Wide variation in androgen receptor dysfunction in complete androgen insensitivity syndrome. The Journal of steroid biochemistry and molecular biology. 1997;61(1-2):19-26.
    108. Eggers S, Ohnesorg T, Sinclair A. Genetic regulation of mammalian gonad development. Nature reviews Endocrinology. 2014;10(11):673-683.
    109. Granados A, Alaniz VI, Mohnach L, et al. MAP3K1-related gonadal dysgenesis: Six new cases and review of the literature. American journal of medical genetics Part C, Seminars in medical genetics. 2017;175(2):253-259.
    110. Warr N, Bogani D, Siggers P, et al. Minor abnormalities of testis development in mice lacking the gene encoding the MAPK signalling component, MAP3K1. PloS one. 2011;6(5):e19572.
    111. Loke J, Pearlman A, Radi O, et al. Mutations in MAP3K1 tilt the balance from SOX9/FGF9 to WNT/β-catenin signaling. Human molecular genetics. 2014;23(4):1073-1083.
    112. Nakamura F, Osborn TM, Hartemink CA, Hartwig JH, Stossel TP. Structural basis of filamin A functions. The Journal of cell biology. 2007;179(5):1011-1025.
    113. Loy CJ, Sim KS, Yong EL. Filamin-A fragment localizes to the nucleus to regulate androgen receptor and coactivator functions. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(8):4562-4567.
    114. Zhou J, Kang X, An H, Lv Y, Liu X. The function and pathogenic mechanism of filamin A. Gene. 2021;784:145575.
    115. Moutton S, Fergelot P, Naudion S, et al. Otopalatodigital spectrum disorders: refinement of the phenotypic and mutational spectrum. Journal of human genetics. 2016;61(8):693-699.
    116. Chen MH, Walsh CA. FLNA Deficiency. In: Adam MP, Ardinger HH, Pagon RA, et al., eds. GeneReviews(®). Seattle (WA): University of Washington, Seattle
    Copyright © 1993-2022, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.; 1993.
    117. Carrera-García L, Rivas-Crespo MF, Fernández García MS. Androgen receptor dysfunction as a prevalent manifestation in young male carriers of a FLNA gene mutation. American journal of medical genetics Part A. 2017;173(6):1710-1713.
    118. Muranishi Y, Itonaga T, Ihara K, et al. PTPN11 and FLNA variants in a boy with ambiguous genitalia, short stature, and non-specific dysmorphic features. Clinical Pediatric Endocrinology. 2024:2023-0074.
    119. van Ravenswaaij-Arts C, Martin DM. New insights and advances in CHARGE syndrome: Diagnosis, etiologies, treatments, and research discoveries. American journal of medical genetics Part C, Seminars in medical genetics. 2017;175(4):397-406.
    120. Bajpai R, Chen DA, Rada-Iglesias A, et al. CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature. 2010;463(7283):958-962.
    121. Kim HG, Kurth I, Lan F, et al. Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am J Hum Genet. 2008;83(4):511-519.
    122. White JJ, Mazzeu JF, Coban-Akdemir Z, et al. WNT signaling perturbations underlie the genetic heterogeneity of Robinow syndrome. The American Journal of Human Genetics. 2018;102(1):27-43.
    123. Sharma M, Castro-Piedras I, Simmons GE, Jr., Pruitt K. Dishevelled: A masterful conductor of complex Wnt signals. Cellular signalling. 2018;47:52-64.
    124. White J, Mazzeu JF, Hoischen A, et al. DVL1 frameshift mutations clustering in the penultimate exon cause autosomal-dominant Robinow syndrome. Am J Hum Genet. 2015;96(4):612-622.
    125. Hu R, Qiu Y, Li Y, Li J. A novel frameshift mutation of DVL1-induced Robinow syndrome: A case report and literature review. Molecular genetics & genomic medicine. 2022;10(3):e1886.
    126. Zhang C, Jolly A, Shayota BJ, et al. Novel pathogenic variants and quantitative phenotypic analyses of Robinow syndrome: WNT signaling perturbation and phenotypic variability. HGG advances. 2022;3(1):100074.
    127. White JJ, Mazzeu JF, Coban-Akdemir Z, et al. WNT Signaling Perturbations Underlie the Genetic Heterogeneity of Robinow Syndrome. The American Journal of Human Genetics. 2018;102(1):27-43.
    128. Szeliga A, Kunicki M, Maciejewska-Jeske M, et al. The Genetic Backdrop of Hypogonadotropic Hypogonadism. International Journal of Molecular Sciences. 2021;22(24):13241.
    129. Valdes-Socin H, Rubio Almanza M, Tomé Fernández-Ladreda M, Debray FG, Bours V, Beckers A. Reproduction, smell, and neurodevelopmental disorders: genetic defects in different hypogonadotropic hypogonadal syndromes. Frontiers in endocrinology. 2014;5:109.
    130. Dodé C, Levilliers J, Dupont JM, et al. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nature genetics. 2003;33(4):463-465.
    131. Raivio T, Sidis Y, Plummer L, et al. Impaired fibroblast growth factor receptor 1 signaling as a cause of normosmic idiopathic hypogonadotropic hypogonadism. The Journal of clinical endocrinology and metabolism. 2009;94(11):4380-4390.
    132. Goshima Y, Yamashita N, Nakamura F, Sasaki Y. Regulation of dendritic development by semaphorin 3A through novel intracellular remote signaling. Cell adhesion & migration. 2016;10(6):627-640.
    133. Dai W, Li J-D, Zhao Y, et al. Functional analysis of SEMA3A variants identified in Chinese patients with isolated hypogonadotropic hypogonadism. Clinical Genetics. 2020;97(5):696-703.
    134. Hanchate NK, Giacobini P, Lhuillier P, et al. SEMA3A, a gene involved in axonal pathfinding, is mutated in patients with Kallmann syndrome. PLoS genetics. 2012;8(8):e1002896.
    135. Colvin SC, Mullen RD, Pfaeffle RW, Rhodes SJ. LHX3 and LHX4 transcription factors in pituitary development and disease. Pediatric endocrinology reviews : PER. 2009;6 Suppl 2:283-290.
    136. Castinetti F, Saveanu A, Reynaud R, et al. A novel dysfunctional LHX4 mutation with high phenotypical variability in patients with hypopituitarism. The Journal of clinical endocrinology and metabolism. 2008;93(7):2790-2799.
    137. Slavotinek A, Risolino M, Losa M, et al. De novo, deleterious sequence variants that alter the transcriptional activity of the homeoprotein PBX1 are associated with intellectual disability and pleiotropic developmental defects. Human molecular genetics. 2017;26(24):4849-4860.
    138. Dintilhac A, Bihan R, Guerrier D, et al. PBX1 intracellular localization is independent of MEIS1 in epithelial cells of the developing female genital tract. The International journal of developmental biology. 2005;49(7):851-858.
    139. Kilstrup-Nielsen C, Alessio M, Zappavigna V. PBX1 nuclear export is regulated independently of PBX-MEINOX interaction by PKA phosphorylation of the PBC-B domain. The EMBO journal. 2003;22(1):89-99.
    140. Berry FB, O'Neill MA, Coca-Prados M, Walter MA. FOXC1 transcriptional regulatory activity is impaired by PBX1 in a filamin A-mediated manner. Molecular and cellular biology. 2005;25(4):1415-1424.
    141. Mendonca BB, Gomes NL, Costa EM, et al. 46,XY disorder of sex development (DSD) due to 17beta-hydroxysteroid dehydrogenase type 3 deficiency. The Journal of steroid biochemistry and molecular biology. 2017;165(Pt A):79-85.
    142. Li W, Huang K, Guo H, Cui G, Zhao S. Inhibition of non-small-cell lung cancer cell proliferation by Pbx1. Chinese journal of cancer research = Chung-kuo yen cheng yen chiu. 2014;26(5):573-578.
    143. Guo L, Chen H, Chen J, et al. PBX1-promoted SFRP4 transcription inhibits cell proliferation and epithelial-mesenchymal transition in endometrial carcinoma. Tissue & cell. 2023;82:102083.
    144. Mortlock DP, Innis JW. Mutation of HOXA13 in hand-foot-genital syndrome. Nature genetics. 1997;15(2):179-180.
    145. Innis JW, Goodman FR, Bacchelli C, et al. A HOXA13 allele with a missense mutation in the homeobox and a dinucleotide deletion in the promoter underlies Guttmacher syndrome. Hum Mutat. 2002;19(5):573-574.
    146. Richard N, Corvaisier S, Camacho E, Kottler ML. KiSS-1 and GPR54 at the pituitary level: overview and recent insights. Peptides. 2009;30(1):123-129.
    147. Ke R, Ma X, Lee LTO. Understanding the functions of kisspeptin and kisspeptin receptor (Kiss1R) from clinical case studies. Peptides. 2019;120:170019.
    148. Cao Y, Li Z, Jiang W, Ling Y, Kuang H. Reproductive functions of Kisspeptin/KISS1R Systems in the Periphery. Reproductive biology and endocrinology : RB&E. 2019;17(1):65.
    149. Chiang C-M, Chiu H-Y, Jong D-S, Wu L-S, Lee Y-J, Chiu C-H. Role of the kisspeptin/KISS1 receptor system in the testicular development of mice. Journal of the Chinese Medical Association. 2020.
    150. Jeanne M, Gould DB. Genotype-phenotype correlations in pathology caused by collagen type IV alpha 1 and 2 mutations. Matrix biology : journal of the International Society for Matrix Biology. 2017;57-58:29-44.
    151. Fradette J, Germain L, Seshaiah P, Coulombe PA. The type I keratin 19 possesses distinct and context-dependent assembly properties. Journal of Biological Chemistry. 1998;273(52):35176-35184.
    152. Pearlman A, Loke J, Le Caignec C, et al. Mutations in MAP3K1 cause 46,XY disorders of sex development and implicate a common signal transduction pathway in human testis determination. Am J Hum Genet. 2010;87(6):898-904.
    153. Bogani D, Siggers P, Brixey R, et al. Loss of mitogen-activated protein kinase kinase kinase 4 (MAP3K4) reveals a requirement for MAPK signalling in mouse sex determination. PLoS biology. 2009;7(9):e1000196.
    154. Warr N, Siggers P, Carré GA, et al. Transgenic expression of Map3k4 rescues T-associated sex reversal (Tas) in mice. Human molecular genetics. 2014;23(11):3035-3044.
    155. Ostrer H. Disorders of Sex Development (DSDs): An Update. The Journal of Clinical Endocrinology & Metabolism. 2014;99(5):1503-1509.
    156. Capellini TD, Handschuh K, Quintana L, et al. Control of pelvic girdle development by genes of the Pbx family and Emx2. Developmental dynamics : an official publication of the American Association of Anatomists. 2011;240(5):1173-1189.
    157. Piard J, Mignot B, Arbez-Gindre F, et al. Severe sex differentiation disorder in a boy with a 3.8 Mb 10q25.3-q26.12 microdeletion encompassing EMX2. American journal of medical genetics Part A. 2014;164A(10):2618-2622.
    158. Guo F, Yan L, Guo H, et al. The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell. 2015;161(6):1437-1452.
    159. Wang J, Tian GG, Zheng Z, Li B, Xing Q, Wu J. Comprehensive Transcriptomic Analysis of Mouse Gonadal Development Involving Sexual Differentiation, Meiosis and Gametogenesis. Biological procedures online. 2019;21:20.
    160. Knarston IM, Pachernegg S, Robevska G, et al. An In Vitro Differentiation Protocol for Human Embryonic Bipotential Gonad and Testis Cell Development. Stem cell reports. 2020;15(6):1377-1391.
    161. Liu L, Wang H, Xu GL, Liu L. Tet1 Deficiency Leads to Premature Ovarian Failure. Frontiers in Cell and Developmental Biology. 2021;9.
    162. La Sala G, Marazziti D, Di Pietro C, Golini E, Matteoni R, Tocchini-Valentini GP. Modulation of Dhh signaling and altered Sertoli cell function in mice lacking the GPR37-prosaposin receptor. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2015;29(5):2059-2069.
    163. Nurchis MC, Altamura G, Riccardi MT, et al. Whole genome sequencing diagnostic yield for paediatric patients with suspected genetic disorders: systematic review, meta-analysis, and GRADE assessment. Archives of public health = Archives belges de sante publique. 2023;81(1):93.
    164. French CE, Delon I, Dolling H, et al. Whole genome sequencing reveals that genetic conditions are frequent in intensively ill children. Intensive care medicine. 2019;45(5):627-636.
    165. Nurchis MC, Radio FC, Salmasi L, et al. Cost-Effectiveness of Whole-Genome vs Whole-Exome Sequencing Among Children With Suspected Genetic Disorders. JAMA Network Open. 2024;7(1):e2353514-e2353514.
    166. Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature biotechnology. 2014;32(4):347-355.
    167. Li M, Suzuki K, Kim NY, Liu GH, Izpisua Belmonte JC. A cut above the rest: targeted genome editing technologies in human pluripotent stem cells. The Journal of biological chemistry. 2014;289(8):4594-4599.
    168. Li L, Li Y, Sottas C, et al. Directing differentiation of human induced pluripotent stem cells toward androgen-producing Leydig cells rather than adrenal cells. Proceedings of the National Academy of Sciences of the United States of America. 2019;116(46):23274-23283.
    169. Chen J, Xiao Y, Gai Z, et al. Reproductive toxicity of low level bisphenol A exposures in a two-generation zebrafish assay: Evidence of male-specific effects. Aquatic toxicology (Amsterdam, Netherlands). 2015;169:204-214.
    170. Leerberg DM, Sano K, Draper BW. Fibroblast growth factor signaling is required for early somatic gonad development in zebrafish. PLoS genetics. 2017;13(9):e1006993.
    171. Webster KA, Schach U, Ordaz A, Steinfeld JS, Draper BW, Siegfried KR. Dmrt1 is necessary for male sexual development in zebrafish. Developmental biology. 2017;422(1):33-46.
    172. Poon KL, Brand T. The zebrafish model system in cardiovascular research: A tiny fish with mighty prospects. Glob Cardiol Sci Pract. 2013;2013(1):9-28.
    173. Kettleborough RN, Busch-Nentwich EM, Harvey SA, et al. A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature. 2013;496(7446):494-497.
    174. Siegfried KR, Nusslein-Volhard C. Germ line control of female sex determination in zebrafish. Developmental biology. 2008;324(2):277-287.
    175. Liew WC, Bartfai R, Lim Z, Sreenivasan R, Siegfried KR, Orban L. Polygenic sex determination system in zebrafish. PloS one. 2012;7(4):e34397.

    無法下載圖示 校內:2026-08-31公開
    校外:2026-08-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE