簡易檢索 / 詳目顯示

研究生: 阮文蓬
Nguyen, Van-Bong
論文名稱: An SDP approach for non-convex quadratic fractional programming problems
An SDP approach for non-convex quadratic fractional programming problems
指導教授: 許瑞麟
Sheu, Ruey-Lin
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 98
外文關鍵詞: Quadratic fractional programming, Dinkelbach algorithm, S-lemma, semidefinite relaxation, generalized trust region subproblem, sum-of-ratios, Rayleigh quotient, generalized Rayleigh quotient
相關次數: 點閱:106下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們關心兩類的二次分式型規劃問題:其一是帶有雙邊二次限制式之二次分式型問題(P),其二是分式和規劃問題(Q)。雖然我們的問題(P)與(Q)是以二次函數的分式型態展現,透過參數化技巧,分式的結構可以被轉換成一系列特殊型的二次限制式二次規劃(QCQP)問題。QCQP問題是文獻中備受關注,存在已久且困難求解的非凸最佳化問題。因此,在處理(P)與(Q),我們不只面對傳統QCQP問題,另外還有從分式結構衍生出的參數要處理。由於我們是直接著手處理二次分式型規劃問題,顯然許多結果對QCQP來說是也會是新且有用的。儘管(P)與(Q)本身是非凸的, 我們主要的想法是探討(P)與(Q)的隱藏凸性。我們主要的工具包含一個強大的機制,即已知的S-引理,以及半正定鬆弛、秩一分解技術。為了引用上述的工具來求解(P)與(Q),我們將問題轉化或拆開成一些子問題,並研究S-引理的新版本、修改秩一分解程序。結果是,我們證明了問題(P)的計算複雜度屬於P類問題,而NP-困難的問題(Q)可以被簡化成一個一維度搜尋問題。我們的解法是創新的,而且容易在電腦上執行。我們的計算結果顯示,在求解全局最佳解方面我們的演算法比其他現有的求解方法更有效率。

    In this dissertation, we are concerned with two types of quadratic fractional programming problems: one is a single ratio quadratic fractional problem with a twosided quadratic constraint (P) and the other is a sum-of-ratios problem (Q). Although we pose the problems (P) and (Q) in the form of ratios of quadratic functions, after some parameterization scheme, the fractional structure can be exchanged with a family of special types of quadratically constrained quadratic programming (QCQP) problems. The QCQP problem is a long-standing difficult non-convex optimization problem which has attracted much attention in literature. Therefore, in dealing with (P) and (Q), we not only face the traditional QCQP problem, but also an additional parameter coming from the ratio structure. Since we feel that we can address the two issues all together, we directly attack the quadratic fractional programming but apparently many results are new and useful to QCQP alone. Our main idea is to probe the hidden convexity of (P) and (Q), in spite that both (P) and (Q) are themselves non-convex. Our main tool is a powerful mechanism, known as the S-lemma, together with the semi-definite relaxation and the rank-one decomposition technique.
    In order to apply the aforementioned tools for solving (P) and (Q), we transform or divide the problems into a few subcases; study new versions of S-lemma; and modify the rank-one decomposition procedure. As a result, we prove that (P) is indeed in the class of P, and the NP-hard problem (Q) can be reduced to a much simpler one-dimensional search problem. Our solution method is novel, and can be easily implemented on the computer. Our computational results show that the algorithms are very efficient in finding the global optimal solution compared with other existing methods.

    Cover......... i Oral presentation document .....ii Chinese version ......ii English version ...... iii Abstract (Chinese) ......iv Abstract (English) .......v Acknowledgments....... vii Table of Contents .......viii Chapter 1.Introduction ......1 1.1 A single-ratio quadratic fractional program ...1 1.1.1 Problem format and background ....1 1.1.2 Dinkelbach Algorithm ......3 1.1.3 A modern technique: Semi-definite relaxation ...4 1.1.4 Our approach .......6 1.2 A sum-of-ratios problem .....8 1.2.1 Problem format and existing methods ...8 1.2.2 Our approach .......10 1.3 Contributions of the dissertation .....12 1.4 Notation ......13 Chapter 2.Quadratically Constrained Quadratic Programming and Its SDP Relaxation ........16 2.1 Semidefinite Programming ( SDP) ....16 2.2 Quadratically constrained quadratic programming and its SDP relaxation 19 2.2.1 The generalized Trust region subproblems (GTRS) .23 2.2.2 The generalized Trust region subproblems with equality constraint .28 2.2.3 The interval bounded generalized trust region subproblem .34 2.2.4 Homogeneous quadratic problems with two quadratic constraints (QP2QC) .........36 Chapter 3.Single-ratio quadratic fractional programming problems .39 3.1 The issue of boundedness and attainment ....40 3.2 A two-sided quadratically constrained quadratic fractional problem .. 41 3.3 A quadratic fractional problem with one inequality quadratic constraint (QF1QC) ........49 3.4 On well-definedness of (QF1QC) .....53 3.5 Chapter Conclusion .......55 Chapter 4.A sum-of-quadratic-ratios problem ....57 4.1 An equivalent reformulation of the problem ....57 4.2 Solving the reformulation problem via SDP ....60 4.2.1 Evaluating the optimal value . .....60 4.2.2 Solving a global solution of the reformulation problem ..63 4.3 Finding __ numerically ......66 4.4 Computational Experiments ......70 4.5 Chapter Conclusion ........74 Chapter 5.Concluding remarks and future researches ...76 5.1 Summary of the dissertation ......76 5.2 Future researches .......77 References .....80

    [1] Ai, W., Zhang, S. Z.: Strong duality for the CDT subproblem: A necessary
    and sufficient condition. SIAM J. Optim., vol. 19, No. 4; 1735-1756 (2009)
    [2] Almogy, Y., Levin, O.: Parametric analysis of a multistage stochastic
    shipping problem. In: Proceedings of the 5th IFORS Conference, 359-370(1964)
    [3] Antoniou, A., Lu, W. S.: Practical Optimization: Algorithms and Engineering
    Applications, Springer Science+ Business Media, LLC (2007)
    [4] Avriel, M., Diewert, W.E., Schaible, S., Zang, I.: Generalized Concavity.
    Plenum Press, New York (1988)
    [5] Barros, A. I., Frenk, J. B. G., Schaible, S., Zhang, S.: A new algorithm
    for generalized fractional programs. Math. Program., 72; 147-175(1996)
    [6] Bazaraa, M. S., Sherali, H. D., Shetty, C. M.: Nonliear Programming:
    Theory and Algorithms. Third Edition. John Wiley and Sons, Inc.,
    Hoboken, New Jersey (2006)
    [7] Beck, A., Eldar, Y. C.: Strong Duality in Nonconvex Quadratic Optimization
    with Two Quadratic Constraint. SIAM J. Optim., 17(3); 844-860(2006)
    [8] Beck, A., Teboulle, M.: A convex optimization approach for minimizing
    the ratio of indefinite quadratic functions over an ellipsoid. Math.
    Program., Ser. A, 118, 13 - 35(2009)
    [9] Beck, A., Teboulle, M.: On Minimizing Quadratically Constrained Ratio
    of Two Quadratic Functions. J. Convex Anal., 17; 789- 804(2010)
    [10] Benson, H. P.: Global optimization algorithm for the nonlinear sum of ratios problem. J. Optim. Theory Appl., 112; 1-29(2002)
    [11] Benson, H. P.: Using concave envelopes to globally solve the nonlinear
    sum of ratios problems. J. Global Optim., 22; 343-364(2002)
    [12] Benson, H. P.: On the global optimization of sum of linear fractional
    functions over a convex set. J. Optim. Theory Appl., 121; 19-39(2004)
    [13] Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization.
    MPS-SIAM Series on Optimization (2001)
    [14] Ben-Tal, A., Teboulle, M.: Hidden convexity in some nonconvex
    quadratically constrained quadratic programming. Math. Program., 72; 51 -63(1996)
    [15] Bernard, J. C., Ferland, J. A.: Convergence of interval-type algorithms
    for generalized fractional programming. Math. Program., Ser. A, 43(3); 349 - 363(1989)
    [16] Brickman, L.: On the field of values of a matrix. Proc. Amer. Math. Soc., 12, 61 -66(1961)
    [17] Bruce D. C.: Fractional Programming. Sigma serries in Applied Mathematics.
    IV, Heldermann (1988)
    [18] Celis, M. R., Dennis, J. E., Tapia, R. A.: A trust region algorithm for nonlinear equality constrained optimization, in Numerical Optimization, R. T. Boggs, R. H. Byrd, and R. B. Schnabel, eds., SIAM, Philadelphia, 71 - 82(1984)
    [19] Charnes, A., Cooper, W. W.: Programming with linear fractional functionals.
    Naval Res. Logist. Quarterly, vol. 9, 181 - 186; (1962)
    [20] Chen, H. J., Schaible, S., Sheu, R. L.: Generic Algorithm for Generalized
    Fractional Programming. J. Optim. Theory Appl., 141; 93-105(2009)
    [21] Colantoni, C.S., Manes, R.P., Whinston, A.: Programming, profit rates,
    and pricing decisions. Account. Rev., 44; 467-481(1969)
    [22] Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Trust-Region Methods. SIAM,
    Philadelphia (2000)
    [23] Craven, B.D.: Fractional programming. Sigma Series in Applied Mathematics,
    vol. 4, Heldermann Verlag Berlin (1988)
    [24] Crouzeix, J. P., Ferland, J. A., Schaible, S.: An Algorithm for Generalized
    Fractional Programs. J. Optim. Theory Appl., 47, No.1 35-49(1985)
    [25] Crouzeix, J. P., Ferland, J. A.: Algorithms for generalized fractional
    programming. Math. Program., 52; 191 -207(1991)
    [26] Dines, L. L.: On the mapping of quadratic forms. Bull. Amer. Math.
    Soc., 47, 494 - 498(1941)
    [27] Dinkelbach, W.: On nonlinear fractional programming. Management
    Science, 13; 492- 498(1967)
    [28] Dundar, M. M., Fung, G., Bi, J., Sandilya, S. Rao, B.: Sparse Fisher discriminant
    analysis for computer aided detection. Proceedings of SIAM International Conference on Data Mining (2005)
    [29] Eberhard, A., Hadjisavvas, N., The Luc, D.: Generalized convexity,
    generalized monotonicity and application: Proceedings of the 7th International
    Symposium On Generalized Convexity and Generalized Monotonicity.
    Springer, Nonconvex Optim. Appl., vol. 77 (2005)
    [30] Faigle, U., Kern, W., Still, G.: Algorithm Principles of Mathematical
    Programming. Kluwer Academic, Dordrecht, (2002)
    [31] Fang, S. C., Gao, D. Y., Sheu, R. L., Xing, W.: Global optimization for
    a class of fractional programming problems. J. Global Optim., 45, No.
    3, 337 - 353(2009)
    [32] Feng, J. M., Lin, G. X., Sheu, R. L., Xia, Y.: Duality and solutions for
    quadratic programming over single non-homogeneous quadratic constraint.
    J. Global Optim., 54, No. 2, 275 - 293(2012)
    [33] Floudas, C. A., Pardalos, P. M., editors: Encyclopedia of Optimization.
    Second Edition. Springer (2009)
    [34] Fortin, C., Wolkowicz, H.: The trust region subproblem and semidefinite
    programming. Optim. Methods Softw., 19(1), 41 - 67(2004)
    [35] Freund, R. W., Jarre, F.: An interior-point method for fractional programs
    with convex constraints. Math. Program., 67, No. 3; 407 -440(1994)
    [36] Freund, R. W., Jarre, F.: Solving the sum-of-ratios problem by an
    interior-point method. J. Global Optim., 19; 83-102(2001)
    [37] Fung, E., Michael, K. Ng.: On sparse Fisher discriminant method for
    microarray data analysis. Bioinformation, 2; 230 - 234(2007)
    [38] Gilmore, P. C., Gomory, R. E.: A linear programming approach to the
    cutting stock problem - Part II, Oper. Res., 11, 863 - 888(1963)
    [39] Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming,
    version 1. 21 Web. http://cvxr. com/cvx (2010)
    [40] Hadjisavvas, N., Komlósi, S., Schaible, S., editors: Handbook of generalized
    convexity and generalized monotonicity. Nonconvex Optim.
    Appl., vol. 76, Springer- Verlag. New York (2005)
    [41] Hiriart-Urruty, J. B.: Potpourri of Conjectures and Open Questions in
    Nonlinear Analysis and Optimization. SIAM Rev., 49, No. 2; 255 -273(2007)
    [42] Horn, R., Johnson, C. R.: Matrix Analysis. Cambridge University Press,
    Cambridge, UK (1985)
    [43] Hsia, Y., Lin, G. X., Sheu, R. L.: A Revisit to Quadratic Programming
    with One Inequality Quadratic Constraint via Matrix Pencil. Pac. J. Optim.,
    10(3), 461- 481(2014)
    [44] Ibaraki, T.: Parametric approaches to fractional Programs. Math. Program.,
    26, 345-362(1983)
    [45] Jeyakumar, V., Li, G. Y.: Trust-region problems with linear inequality
    constraints: exact SDP relaxation, global optimality and robust optimization.
    Math. Program., Ser. A DOI 10.1007/s10107-013-0716-2
    [46] Karmarkar, N.: A new polynomial-time algorithm for linear programming.
    Combinatorica, 4(4); 373 - 395(1984)
    [47] Khan, Z.A., Hanson, M.A.: On ratio invexity in mathematical programming.
    J. of Math. Ana. and App., 205, No. 2; 330 - 336(1997)
    [48] Konno, H., Fukaishi, K.: A branch and bound algorithm for solving
    low rank linear multiplicative and fractional programming problems. J.
    Global Optim., 18; 283 -299(2000)
    [49] Konno, H., Inori, M.: Bond portfolio optimization by bilinear fractional
    programming. J. Oper. Res. Soc. Jpn., 32; 143- 158(1989)
    [50] Konno, H., Watanabe, H.: Bond portfolio optimization problems and
    their application to index tracking: a partial optimization approach. J.
    Oper. Res. Soc. Jpn., 39; 295 - 306(1996)
    [51] Kuno, T.: A branch-and-bound algorithm for maximizing the sum of
    several linear ratios. J. Global Optim., 22; 155 - 174(2002)
    [52] Liang, Z.A., Huang, H.X., Pardalos, P.M.: Optimality conditions and
    duality for a class of nonlinear fractional programming problems. J. of
    Optim. Theory Appl., 110, No. 3; 611- 619(2001)
    [53] Lin, J. Y., Chen, H. J., Sheu, R. L.: Augmented Lagrange Primal-dual
    Approach for Generalized fractional programming Problems. J. Ind.
    Manag. Optim., vol. 9, No.4, 723- 741(2013)
    [54] Lo, A., MacKinlay, C.: Maximizing predictability in the stock and bond
    markets, Macroeconomic Dynamics, 1, 102 - 134(1997)
    [55] Luenberger, D. G., Ye, Y.: Linear and Nonlinear Programming. Third
    Edition, Springer Science+Business Media, LLC. (2008)
    [56] Lu, C., Fang, S. C., Jin, Q., Wang, Z., Xing, W.: KKT solution and conic
    relaxation for solving quadratically constrained quadratic programming
    problems, SIAM J. Optim., 21; 1475 - 1490(2011)
    [57] Luo, Z. Q., Zhang, S. Z.: On Extensions of the Frank-Wolfe Theorems.
    Comput. Optim. Appl., 13; 87 - 110(1999)
    [58] Martos, B.: Hyperbolic programming. Naval Res. Logist. Quarterly,
    11; 135 - 155(1964)
    [59] Martos, B.: Nonlinear Programming. Theory and Methods. North-
    Holland, Amsterdam (1975)
    [60] Meszaros, Cs., Rapcs ak, T.: On sensitivity analysis for a class of decision
    systems. Decision Support Systems, 16, 231 - 240(1996)
    [61] Mjelde, K.M.: Methods of the Allocation of Limited Resources, Wiley,
    New York (1983)
    [62] Mordecai, A., Walter, D. E., Siegfried, S., Israel, Z.: Generalied Concavity.
    Society for Industrial and Applied Mathematics (2010)
    [63] Moré, J. J.: Generalization of the trust region problem. Optim. Methods
    Softw., 2; 189 - 209(1993)
    [64] Nguyen, V. B., Sheu, R. L., Xia, Y.: An SDP approach for quadratic
    fractional problems with a two-sided quadratic constraint. Optim. Methods
    Softw., DOI: 10.1080/10556788.2015.1029575 (2015)
    [65] Nguyen, V. B., Sheu, R. L., Xia, Y.: Maximizing the sum of a generalized
    Rayleigh quotient and another Rayleigh quotient on the unit sphere
    via semidefinite programming. To appear in J. Global Optim.
    [66] Pardalos, P. M., Vavasis, S.A.: Quadratic programming with one negative
    eigenvalue is NP-Hard. J. Global Optim., 1; 15 - 22(1991)
    [67] Pólik, I., Terlaky, T.: A Servey of S-lemma. SIAM Rev., 49(3); 371 -418(2007)
    [68] Polyak, B., T.: Convexity of quadratic transformations and its use in
    control and optimization, J. Optim. Theory Appl., 99; 553 - 583(1998)
    [69] Pong, T. K., Wolkowicz, H.: The Generalized Trust Region Subprobelm.
    Comput. Optim. Appl., 58; 273 - 322(2014)
    [70] Primolevo, G., Simeone, O., Spagnolini, U.: Towards a joint optimization
    of scheduling and beamforming for MIMO downlink. In: IEEE
    Ninth International Symposium on Spread Spectrum Techniques and
    Applications, 493 - 497(2006)
    [71] Rao, M.R.: Cluster analysis and mathematical programming. J. Am.
    Stat. Assoc., 66; 622 - 626(1971)
    [72] Reddy, L.V., Mukherjee, R.N.: Some results on mathematical programming
    with generalized ratio invexity. J. Math. Anal. Appl., 240, No.
    2; 299 - 310(1999)
    [73] Rendl, F., Wolkowicz, H.: A semidefinite framework for trust region
    subproblems with applications to large scale minimization. Math. Program.,
    77; 273 - 299(1997)
    [74] Schaible, S.: Parameter-free convex equivalent and dual programs of
    fractional programming problems. Zeitschrift für Oper. Res., 18; 187 -196(1974)
    [75] Schaible, S.: Fractional programming I: duality. Management Science,
    22, No. 8; 858 - 867(1976)
    [76] Schaible, S.: Fractional programming with sums of ratios. In: Castagnoli,
    E., Giorgi, G. (eds.) Scalar and Vector Optimization in Economicand Financial Problems, Proceedings of the Workshop in Milan, 1995. Elioprint, Milan (1996)
    [77] Stancu-Minasian, I.M.: Bibliography of fractional programming. 1960-1976, Pure Appl. Math. Sci., 13 (1-2), 35-69 (1981)
    [78] Stancu-Minasian, I.M.: A second bibliography of fractional programming:
    1977-1981, Pure Appl. Math. Sci., 17 (1-2), 87-102 (1983)
    [79] Stancu-Minasian, I.M.: A third bibliography of fractional programming.
    Pure Appl. Math. Sci., 22 (1-2), 109-122 (1985)
    [80] Stancu-Minasian, I.M.: A fourth bibliography of fractional programming.
    Optimization, 23 (1), 53-72 (1992)
    [81] Stancu-Minasian, I.M.: A fifth bibliography of fractional programming.
    Optimization, 45 (1-4), 343-367 (1999), Dedicated to the memory of
    Professor Karl-Heinz Elster.
    [82] Stancu-Minasian, I.M.: A sixth bibliography of fractional programming.
    Optimization, 55 (4), 405-428 (2006)
    [83] Stern, R. J., Wolkowicz, H.: Indefinite trust region subproblems and
    nonsymmetric eigenvalue perturbations. SIAM J. Optim., 5; 286-313(1995)
    [84] Sturm, J. F., Zhang, S. Z.: On cones of nonnegative quadratic functions.
    Math. Oper. Res., 28; 246 - 267(2003)
    [85] Tuy, H., Tuan, H. D.: Generalized S-Lemma and strong duality
    in nonconvex quadratic programming. J. Global Optim., DOI 10:1007/s10898 -012 - 9917 - 0
    [86] Vanderberghe, L., Boyd, S.: Semidefinite programming, SIAM Rev.,
    38; 49 - 95(1995)
    [87] Wang, S., Xia, Y.: Strong duality for generalized trust region subproblem:
    S-lemma with interval bounds. Optim. Lett., DOI 10.1007/s11590-
    014-0812-0 (2014)
    [88] Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of semidefinite
    programming: Theory, Aigorithms, and Applications. Springer Science+
    Business Media New York, Second printing (2003)
    [89] Wu, W. Y., Sheu, R. L., Birbil, I.: Solving the sum-of-ratios problem by
    a stochastic search algorithm. J. Global Optim., vol. 42, Issue 1; 91 -109(2008)
    [90] Wu, M.C., Zhang, L.S., Wang, Z.X., Christiani, D.C., Lin, X.H.: Sparse
    linear discriminant analysis for simultaneous testing for the significance
    of a gene set/pathway and gene selection. Bioinformatics, 25; 1145 - 1151(2009)
    [91] Xia, Y.: On Minimizing the Ratio of Quadratic Functions
    over an Ellipsoid. Optimization, (2013) http:// dx.doi.org/10.1080/02331934.2013.840623
    [92] Xia, Y., Wang, S., Sheu, R. L.: S-Lemma with Equality and Its Applications.
    To appear in Math. Program., Ser. A.
    [93] Yakubovich, V. A.: S-procedure in nonlinear control theory. Vestnik
    Leningrad. Univ., 4; 73 -93(1977)
    [94] Yang, Q.: A new proof of the strong duality theorem for semidefinite
    programming. J. Math. Anal. Appl., 303; 622 - 626(2005)
    [95] Ye, Y., Zhang, S. Z.: New results on quadratic minimization. SIAM J.
    Optim., 14, No. 1, 245 - 267(2003)
    [96] Yuan, Y.: On a subproblem of Trust region algorithm for constrained
    optimization. Math. Program., North-Holland, 47; 53 - 63 (1990)
    [97] Zhang, L. H.: On optimizing the sum of the Rayleigh quotient and the
    generalized Rayleigh quotient on the unit sphere. Comput. Optim. Appl.,
    54; 111 - 139(2013)
    [98] Zhang, L. H.: On a self-consistent-field-like iteration for maximizing
    the sum of the Rayleigh quotients. J. Comput. Appl. Math., 257; 14 -
    28(2014)
    [99] Zhang, A., Hayashi, S.: Celis-Dennis-Tapia based approach to quadratic
    fractional programming problems with two quadratic constraints. Numer.
    Algebra Control Optim. (NACO)., 1, Issue 1; 83 - 98(2011)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE