簡易檢索 / 詳目顯示

研究生: 潘柏岑
Pan, Po-Tsen
論文名稱: 應用土耕法配合生物添加促進法整治柴油污染土壤之研究
Land farming bioremediation of diesel contaminated soil associated with biostimulation and bioaugmentation
指導教授: 鄭幸雄
Cheng, S.S.
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 164
中文關鍵詞: 生物復育土耕法柴油
外文關鍵詞: bioremediation, TPH-d, land farming
相關次數: 點閱:93下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本實驗主要目的評估以不同生物添加促進方式條件下,藉由類似土耕法(land farming)配合生物堆法(biopile)整治受柴油污染土壤之可行性研究。研究中針對碳氫化合物中C10~C28範圍柴油(diesel)為土壤中之目標污染物(target compound),分別於實驗室進行批次實驗(lab-scale)及離場模場(ex-situ pilot)實驗操作,探討不同實驗因子對於微生物好氧分解柴油效率之影響。
    批次實驗中(lab-scale)探討生物界面活性劑(rhamnolipid, 代號r)與化學合成界面活性劑(Tween 80, 代號t)於批次試驗中微生物分解柴油情形,操作條件分別為(1)添加不同柴油濃度土壤中;(2)添加不同種類界面活性劑(r 及 t);(3)添加不同濃度界面活性劑於土壤中;(4)不同翻堆(通氣)週期。
    實驗結果顯示,含不同柴油濃度高低之生物堆(biopile)中施行生物促進方式(biostimutation)表現均優於控制組。以每隔2天週期翻堆者表現為例,添加rhamnolipid優於添加Tween 80,其土壤中柴油去除效果及其一階反應速率表現最為優異。以添加低濃度界面活性劑與低濃度柴油於土壤中為例(土堆代號為2FLrLd),經連續操作80天後,其一階反應速率常數K值為0.0414 day-1、去除效率=95%,反應期間第42天時土壤柴油濃度降為1000 mg/kg dry soil以下。相同背景土壤柴油濃度下,控制組(BK1)連續操作80天,其K值為0.0089 day-1、去除效率=68%。
    模場中以生物促進方式,包括添加額外營養(Nutrient enchance, NE)、添加生物界面活性劑(BS)及生物放大(bioaugmentation, BA1)的方式,評估以土壤翻堆技術具有較佳處理效果。結果顯示,前30天各土堆(biopile)表現為:一階反應速率(K值,單位day-1): BA1(0.0592 )>BS(0.0205)>Ct(控制組)(0.0065)。去除效率(單位 %): BA1(77)>NE(74)>BS(40)>Ct(15)。模場試驗中,以生物刺激(NE 及BS)與生物添加方式(BA1)去除效果遠大於控制組(Ct)且縮短整治時間。

    Abstract
    In recent years, a variety of researches has been developed the technology of soil treatment -- bioremediation is one of them, due to its advantages of low-cost and less harmful to the environment; it is considered to have the most potential in soil treatment and is a technology that can be further developed. The effect of biosurfactant (Rhamnolipid) and synthesized surfactant (Tween 80) on diesel degradation were compared in batch test at laboratory scale.
    The results obtained from batch test showed that the most effective diesel degradation occurred with lower concentration of biosurfactant (10mg/kg dry soil). On the contrary, high concentration of biosurfactant (80mg/kg dry soil) inhibited diesel degradation.
    The 16 runs were tested with different combinations of the following components: 1) concentrations of diesel (3,200 and 15,000 mg/kg), 2) surfactants (Tween 80 and rhamnolipid), 3) concentrations of the surfactants (10 and 80 mg/kg), and 4) cycles of soil agitation (2 days and 10 days). The results indicated that the removal efficiency of the total petroleum hydrocarbon-diesel (TPH-d) in designed groups were all superior to that in the controlled groups. The 2-day agitation group created effective ventilation which resulted in a better degradation rate than that of the 5-day agitation group. In 2-day agitation, all of the groups produced an advanced removal efficiency of TPH-d (68% - 95%) over that of the 10-day agitation (26% - 83%); with one only exception (addition of 10 mg/kg of rhamnolipid to the 15,000 mg/kg of diesel-contaminated soil). In the case of the 3,200 mg/kg-diesel contaminated soil, addition of the 10 mg/kg of rhamnolipid performed better than that of the 80 mg/kg, regardless of the agitation rates. Also, TPH-d removal efficiency was significantly improved by adding rhamnolipid instead Tween 80. The optimal condition, TPH-d removal efficiency of 95%, was attained by the group with the 10 mg/kg of rhamnolipid addition and 2-day agitation rate, employed in the case of the 3,200 mg/kg-diesel contaminated soil. Similarly, in the case of the 15,000 mg/kg-diesel contaminated soil, addition of 10 mg/kg of surfactants tended to be more effective than that of 80 mg/kg of surfactants. In the same condition, the addition of rhamnolipid still tended to be more helpful than that of Tween 80. However, two equivalent optimal conditions (removal efficiency of 78-79%) were achieved in the highly contaminated soils by both of the surfactants, 80 mg/kg of rhamnolipid addition and 10 mg/kg of Tween 80 addition, with the same 2-day agitation rate. Three conclusions were draw from this study: 1) agitation rate is one of the most important factors that determines the bioremediation performance, 2) relatively low addition of surfactants (10 mg/kg) produced a greater TPH-d removal efficiency, 3) rhamnolipid is beneficial for bioremediation of petroleum hydrocarbons, not only because of its biodegradability, but also the resultant TPH-d removal efficiency.
    A recently diesel-contaminated soil site was investigated to apply different enhanced bioremediation process with pilot scale of 0.5m3 biopiles. Conceptual design of four biopiles was conducted to provide:(1).well-mixing biopile with the indigenous microbe as control test, Ct, (2).nutrient enhanced biopile added with BH medium of mineral nutrients, NE, (3).bioaugmentation with three types of enrichmental culture of diesel-degrading bacteria, BA1, (4).biostimutation with biosurfactant (rhamnolipid) to emulsify the entrapped diesel adsorbed onto the soil pore, BS. In this study, three strains of diesel-degrading bacteria were isolated from the diesel contaminated top soil in the local field. The biosurfactant of rhamnolipid was produced from the enriched culture of Pseudomonas erugenosa with special cultivation and centrifugal separation.
    Therefore, the TPH-d removal efficiencies achieved at different levels in these four biopiles, Ct=15%, NE=74%, BA1=77%, BS=40%. Bioremediation performance was promoted by the bioaugmentation, while the biosurfactant addition (BS) attainted fair performance. The indigenous biopile (Ct) was still inhibited by the high loading of diesel with 3,600 mg TPH-d/kg dry soil. The first order reaction rate constant K values (day-1) was evaluated as BA1(0.0592)>NE(0.0442)>BS(0.0205)>Ct(0.0065). Molecular biomonitoring methods were developed to identify the diesel-degrading bacteria existed in all biopiles:(1).DGGE electrophoresis showed the predominant group was Pseudomonas sp. presented in three biopiles of NE, BA1 and BS, (2).Microarray biochip could identify more species of the diesel-degrading bacteria. This pilot study of three months of biopile farming approved that bioaugmentation and biostimulation could enchance the bioremediation of TPH-d contaminated soil.

    目錄 口試合格證明 中文摘要 英文摘要 誌謝 目錄 表目錄 圖目錄 第一章 前言----------------------------------------------------------------------------------1 第二章 文獻回顧------------------------------------------------------------------------------3 2-1 總石油碳氫化合物---------------------------------------------------------------------------3 2-1-1柴油之組成成分----------------------------------------------------------------------------6 2-1-2石油碳氫化合物之化學組成對生物分解難--------------------------------------------------8 2-1-3具有分解石油碳氫化合物微生物---------------------------------------------------------11 2-2石油碳氫化合物整治技術---------------------------------------------------------------------16 2-2-1受污染土壤之處理物理化學方法-------------------------------------------------------------21 2-2-2影響生物復育主要因子---------------------------------------------------------------------24 2-2-3受油污染土壤之離場生物處理方法-----------------------------------------------------------27 2-3土壤生物復育之土耕法介紹(U.S. EPA, 2004)---------------------------------------------------30 2-3-1土耕法結合生物促進與生物添加法-----------------------------------------------------------32 2-3-2 以生物復育方式應用土耕法處理碳氫化合物相關研究-----------------------------------------34 2-4 界面活性劑介紹----------------------------------------------------------------------------36 2-4-1 界面活性劑之特性------------------------------------------------------------------------36 2-4-2 界面活性劑種類--------------------------------------------------------------------------41 2-4-3 界面活性劑對微生物碳氫化合物之影響------------------------------------------------------45 2-4-4 界面活性劑優缺點--------------------------------------------------------------------51 2-4-5 界面活性劑石油工業之土壤整治應用--------------------------------------------------------53 第三章 實驗材料與方法-------------------------------------------------------------------------55 3-1 研究材料----------------------------------------------------------------------------------55 3-1-1界面活性劑-------------------------------------------------------------------------------55 3-1-2 植種微生物------------------------------------------------------------------------------56 3-1-3柴油及藥品-------------------------------------------------------------------------------56 3-1-4柴油分析(TPH-d) -------------------------------------------------------------------------58 3-2土壤中菌量計數-平盤計數法 (Plate-counts)---------------------------------------------------60 3-3 掃描式電子顯微鏡 (Scanning electron microscope, SEM)-----------------------------61 3-4分子生物技術-------------------------------------------------------------------------------62 3-4-1總DNA萃取--------------------------------------------------------------------------------62 3-4-2聚合酶酵素連鎖反應 (Polymerase chain reaction,PCR)--------------------------------64 3-4-3變性梯度明膠電泳---------------------------------------------------------------------66 3-4-4微矩陣生物晶片(Micro-array) 張長泉 教授研究室---------------------------------------70 3-5柴油汙染土壤添加生物界面活性劑生物復育試驗-------------------------------------------------73 3-5-1實驗室規模之土壤反應器-------------------------------------------------------------------73 3-5-2模場規模之土壤反應器---------------------------------------------------------------------75 第四章 結果與討論-----------------------------------------------------------------------------79 4-1界面活性劑性質----------------------------------------------------------------------------79 4-1-1 界面活性劑乳化指數(E24)與表面張力(mN/m)-------------------------------------------------79 4-2界面活性劑對柴油生物降解影響(實驗室規模)---------------------------------------------------82 4-2-1實驗設計組數(Lab. Biopile) --------------------------------------------------------------82 4-2-2探討不同翻堆週期(2day & 10day)微生物分解柴油效率-----------------------------------------83 4-2-3探討不同界面活性劑(RL & Tween 80)微生物分解柴油效率------------------------------------109 4-2-4控制組(Control)微生物分解柴油效率-------------------------------------------------------127 4-2-5環境因子--------------------------------------------------------------------------------128 4-3以生物促進生物添加方式探討柴油汙染土壤生物復育試驗(模場規模)------------------------------132 4-3-1受柴油污染土壤離場生物復育--------------------------------------------------------------132 4-3-2土壤柴油濃度隨時間變化情形--------------------------------------------------------------133 4-3-3微生物分析(菌落數CFU/g dry-soil)--------------------------------------------------------137 4-3-4環境因子--------------------------------------------------------------------------------139 4-5分子生物技術應用監測微生物社會族群變異----------------------------------------------------143 4-5-1變性梯度凝膠電泳(DGGE)法檢測結果--------------------------------------------------------143 4-5-2生物晶片檢測結果 (方法:張長泉 老師研究室)-----------------------------------------------144 4-5-3 掃瞄式電子顯微鏡(SEM)觀察-------------------------------------------------------------146 第五章 結論與建議----------------------------------------------------------------------------154 5-1結論--------------------------------------------------------------------------------------154 5-2建議--------------------------------------------------------------------------------------155 第六章 參考文獻------------------------------------------------------------------------------157 表目錄 Table 2-1-1 Classification of the total petroleum hydrocarbon structure Table 2-1-2 Fractional distillation temperature of Mineral oil Products Table 2-1-3 Specification for diesel fuel (CPC) Table 2-1-4 Diesel component Table 2-1-5 Characterization of aliphatic and aromatic fractions of a commercial diesel sample Table 2-1-6 Chemical structure and biodegradability Table 2-1-7 Chemical structure of total petroleum hydrocarbon and biodegradability Table 2-1-8 美國毒性物質與疾病管制局對石化油之分類及其化合物 Table 2-1-9 Hydrocarbon-degrading Microbial Population in contaminated oil Table 2-1-10 Aromatic hydrocarbon-degrading Microbial Population in contaminated oil Table 2-2-1 Investigation of soil and groundwater pollution in Taiwan (2001~2005) Table 2-2-2 Phical and chemical methods in oil-contaminated soil Table 2-2-3 Factors limiting bioremediation technologies Table 2-2-4 Ex-situ bioremediation of oil-contaminated soil Table 2-2-5 Comparison of the bioremedation system proposed here Table 2-3-1 Evaluation of the landfarming design Table 2-3-2 The effectiveness of landfarming depend on many parameters Table 2-3-3 The effectiveness of landfarming for biotreatability studies Table 2-3-4 Land farming bioremediation of diesel contaminated soil associated with biostimulation and bioaugmentation Table 2-4-1 Hydrophilic - lipophilic blance values (歐靜枝, 1990) Table 2-4-2 Types of surfactant Table 2-4-3 Types of surfactant hydrophilic group Table 2-4-4 Chemical structure of surfactants hydrophilic and hydrophobic group Table 2-4-5 Structure of bioSurfactants hydrophilic and hydrophobic group Table 2-4-6 Nonionics and nonionics surfactants bioavailability Table 2-4-7 Structure and properties of selected surfactants (Daniel H. Yeh, 1998) Table 2-4-8 Microbial source and properties of important types of biosurfactant Table 3-1-1 Microbial source of degraded-diesel Table 3-1-2 Method and instrument of water quality Table 3-1-3 BH (Bushnëll Hass) medium Table 3-1-4 The composition of plate-count medium Table 3-4-1 Oligonucleotide primers used for amplification Table 3-4-2 Condition of variouse primers used in PCR Table 3-4-3 Stock concentration of denature solution Table 3-5-1 Soils packing conditions Table 3-5-2 Operation conditions Table 3-5-3 Soil characteristic and properties Table 4-2-1 Degradation rate constants in microcosm set up (2day & 10day) Table 4-2-2 Degradation rate constants in microcosm set up (2day & 10day) Table 4-5-1 Result of Microarray test in biopile (Ct/NE/BA1/BS) 圖目錄 Fig.2-1-1 Approximate carbon and bolling range product types produced from petroleum Fig.2-2-1 Superfound source treatment projects Fig.2-2-2 In situ and Ex situ superfound bioremedation projects Fig.2-2-3 Superfound bioremedation projects Fig.2-4-1 Physicochemical Properties of Surfactants Fig.2-4-2 Five of proposed micelle shapes Fig.2-4-3 A schematic representation of oil in water and water in oil microemulsions including cosurfactants Fig.3-4-4 DGGE gel compose of denature solution, 10% APS and TEMED Fig.3-5-1 Experiment equipment Fig.3-5-2 Experiment equipment Fig.3-5-3 Scheme diagram of pilots theof biopile Fig.4-1-1. Emulsification index(E24) test under different surfactin concentration Fig.4-1-2 Surface tension test under different surfactin concentration. Fig.4-2-1 Degradation of mineral oil in diesel oil-contaminated soil in biopile (2F-LtLd&10F-LtLd) Fig.4-2-2 Heterotrophic aerobic bacterial (HAB) counts in biopile (2F-LtLd&10F-LtLd) Fig.4-2-3 Rate of specialized microorganisms (HAB/HDB,%) in biopile (2F-LtLd&10F-LtLd) Fig.4-2-4 Degradation of mineral oil in diesel oil-contaminated soil in biopile (2F-HtLd&10F-HtLd) Fig.4-2-5 Heterotrophic aerobic bacterial (HAB) counts in biopile (2F-HtLd&10F-HtLd) Fig.4-2-6 Rate of specialized microorganisms(HAB/HDB,%) in biopile (2F-HtLd&10F-HtLd) Fig.4-2-7 Degradation of mineral oil in diesel oil-contaminated soil in biopile (2F-LrLd&10F-LrLd) Fig.4-2-8 Heterotrophic aerobic bacterial (HAB) counts in biopile (2F-LrLd&10F-LrLd) Fig.4-2-9 Rate of specialized microorganisms(HAB/HDB,%) in biopile (2F-LrLd&10F-LrLd) Fig.4-2-10. Degradation of mineral oil in diesel oil-contaminated soil in biopile (2F-HrLd&10F-HrLd) Fig.4-2-11 Heterotrophic aerobic bacterial (HAB) counts in biopile (2F-HrLd&10F-HrLd) Fig.4-2-12 Rate of specialized microorganisms(HAB/HDB,%) in biopile (2F-HrLd&10F-HrLd) Fig.4-2-13 Degradation of mineral oil in diesel oil-contaminated soil in biopile(2F-LtHd&10F-LtHd Fig.4-2-14 Heterotrophic aerobic bacterial (HAB) counts in biopile (2F-LtHd&10F-LtHd) Fig.4-2-15 Rate of specialized microorganisms(HAB/HDB,%) in biopile (2F-LtHd&10F-LtHd) Fig. 4-2-16 Degradation of mineral oil in diesel oil-contaminated soil in biopile(2F-HtHd&10F-HtHd) Fig.4-2-17 Heterotrophic aerobic bacterial (HAB) countsin biopile (2F-HtHd&10F-HtHd) Fig.4-2-18 Rate of specialized microorganisms(HAB/HDB,%) in biopile (2F-HtHd&10F-HtHd) Fig.4-2-19. Degradation of mineral oil in diesel oil-contaminated soil in biopile(2F-LrHd&10F-LrHd) Fig.4-2-20 Heterotrophic aerobic bacterial (HAB) counts in biopile (2F-LrHd&10F-LrHd) Fig.4-2-21 Rate of specialized microorganisms(HAB/HDB,%) in biopile (2F-LrHd&10F-LrHd) Fig.4-2-22 Degradation of mineral oil in diesel oil-contaminated soil in biopile(2F-HrHd&10F-HrHd) Fig.4-2-23 Heterotrophic aerobic bacterial (HAB) counts in biopile (2F-HrHd&10F-HrHd) Fig.4-2-24 Rate of specialized microorganisms (HAB/HDB,%) in biopile (2F-HrHd&10F-HrHd) Fig.4-2-25 Degradation of mineral oil in diesel contaminated soil in biopile (2F-HrLd &2F-LrLd、2F-HtLd &2F-LtLd) Fig.4-2-26 Degradation of mineral oil in diesel contaminated soil in biopile (2F-LtLd&2F-LrLd、2F-HtLd&2F-HrLd) Fig.4-2-27 Degradation of m ineral oil in diesel contaminated soil Fig.4-2-28 Degradation of mineral oil in diesel contaminated soil in biopile (2F-LtHd&2F-LrHd、2FHtHd&2F-HrHd) Fig.4-2-29 Degradation of mineral oil in diesel contaminated soil in biopile (2F-HtHd&2F-LtHd、2F-HrHd&2FLrHd) Fig.4-2-30 Degradation of m ineral oil in diesel contaminated soil Fig.4-2-31 Degradation of mineral oil in diesel contaminated soil in biopile (10F-HtLd&10F-HrLd、10F-HrLd&10F-LrLd) Fig.4-2-32 Degradation of mineral oil in diesel contaminated soil in biopile (10F-LtLd&10F-LrLd、10F-HrLd&10F-HrLd) Fig.4-2-33 Degradation of mineral oil in diesel contaminated soil Fig.4-2-34 Degradation of mineral oil in diesel contaminated soil in biopile (10F-HtHd&10F-LtHd、10F-HrHd&10F-LrHd) Fig.4-2-35 Degradation of mineral oil in diesel contaminated soil in biopile (10F-LtHd&10F-LrHd、10F-HtHd&10F-HrHd) Fig.4-2-36 Degradation of m ineral oil in diesel contaminated soil Fig.4-2-37 Degradation of mineral oil in diesel contaminated soil in biopile (BK1&BK2) Fig.4-2-38 Soil respiration in diesel oil-contaminated soil piles ( A:O2、B:CO2) Fig.4-2-39 Soil respiration in diesel oil-contaminated soil piles ( A:O2、B:CO2) Fig.4-2-40 Soil respiration in diesel oil-contaminated soil piles ( A:O2、B:CO2) Fig. 4-2-41 Soil respiration in diesel oil-contaminated soil piles ( A:O2、B:CO2) Fig.4-3-1 Degradation of mineral oil in diesel contaminated soil (Ct/NE) Fig.4-3-2 Degradation of mineral oil in diesel contaminated soil(BA/BS) Fig.4-3-3 Heterotrophic aerobic bacterial (HAB) counts in biopile (Ct/NE/BA1/BS) Fig.4-3-4 Rate of specialized microorganisms(HAB/HDB,%) in biopile (Ct/NE/BA1/BS) Fig.4-3-5 Soil respiration in diesel oil-contaminated soil piles (Ct/NE/BA1/BS) Fig.4-3-6 Soil factors in diesel oil-contaminated soil piles Fig 4-5-1 DGGE profiles of 16S rDNA gene fragments for PCR amplified of nucleic acidfrom F.D. Bio-Pile of Ct & NE Fig 4-5-2 DGGE profiles of 16S rDNA gene fragments for PCR amplified of nucleic acidfrom F.D. Bio-Pile of BA & BS

    參考文獻
    1. Atlas, R.M., Microbial degradation of petroleum hydrocarbons:
    an environmental perspective. Microb. Rev. 45: 180-209, 1981.
    2. Atlas, R.M., Petroleum biodegradation and oil spill bioremediation.
    Marine Pollution Bulletin. 31: 178-182, 1995.
    3. Aldrett, S., Bonner, J.S., McDonalds, T.J., Millers, M.A., Autenrieth,
    R.L., Degradation of crude oil enhanced by commercial microbials cultures.
    American Petroleum Insitute, Washington, DC, pp.995-996., 1997.
    4. Bossert, I. & Bartha, R., The fate of petroleum in soil ecosystems. In
    petroleum Microbiology, Atlas R.M., Macmillan, New York., 1984.
    5. Beal, R., Betts, W.B., Role of rhamnolipid biosurfactants in uptake and
    mineralization of hexadecane in pseudomonas aeruginosa. Journal of Applied
    Microbiology 89 158-168., 2000.
    6. Banat I.M., Biosurfactants production and possible uses in microbial
    enhanced oil recovery and oil pollution remediation. Fuel and Energy. 36,
    290-298., 1995.
    7. Beal, R., Betts, W.B., Role of rhamnolipid biosurfactants in uptake and
    mineralization of hexadecane in pseudomonas aeruginosa. Journal of Applied
    Microbiology 89 158-168., 2000.
    8. Colwell, R. R. & J. D. Walker., Ecological aspects of microbial
    degradation of petroleum in marine environmental. Crit. Rev. Microbiol.
    Vol. 5, 423-445., 1977.
    9. Connan Jacques., Biodegradation of Crude Oils in Reserviors, in Advanced
    in Petroleum Geochemistry, vol1, Brooks, Jim., and Dietrich, Welte., Ed.,
    Academic Press., 1984.
    10. Cooper, D.G., Biosurfactants. Microbiol. Sci. 3, 145149., 1986.
    11. Calabrese, E.J., and Kostecki, P.T. Soil contaminated by petroleum:
    Environmental and Public Health Effects. JOHN WILEY&SONS.
    NEW York. 5-18, 1988.
    12. Cerniglia, C.E., Biodegradation of Polycyclic aromatic hydrocarbons.
    Biodegradation 3 351-368. , 1992.
    13. Christopher W. Kaplan and Christopher L. Kitts, Bacterial succession in
    petroleum land treatment unit. Applied Environmental Microbiology, P.1777-
    1786., 2003.
    14. Cruden, D., J.H. Wolfram, R.D. Rogers, and D.T. Gibson., Physiological
    properties of a pseudomonas strain which grows with p-xylene in a two
    phase (organic-aqueous)medium. Appl. Environ. Microbiol. 58: 2723-2729.,
    1992.
    15. Churchill, S.A., Griffin, R.A., Jones, L.P., Churchill, P.F.,
    Biodegradation rate enhancement of hydrocarbons by an oleophilic
    fertilizer and a rhamnolipid biosurfactant. Journal of Environmental
    Quality 24, 19-28., 1995.
    16. Catherine N. Mulligan, Environmental applications for biosurfactants.
    Environmental Pollution 133 183-198., 2004.
    17. Desai J.D., Banat I.M., Microbial production of surfactants and
    their commercial potential. Microbiology and Molecular Biology
    Reviews. 61, 47-64., 1997.
    18. Helenius A. and Simons K., Solubilizationof membrances by detergents.
    BioChem. Biophys. Acta. 415: 29-79, 1975.
    19. Herman, D.C., Arotiola, J.F., Miller, R.M., Removal of cadmium,lead and
    zinc from soil by a rhamnolipid biosurfactant. Environmental Science and
    Technology. 29 2280=2295., 1995.
    20. Guerin William F. & Jones E. Galen, Mineralization of phenanthrene by a
    Mycobacterium sp. Applied and environmental microbiology. 54(4):937-944.,
    1988.
    21. Ito, S.,& S. Inoue., Sophorolipids from Torulopsis bombicola:
    possible relation to alkane uptake. Appl. Environ. Microbiol. Lett.38
    299-308., 1982.
    22. Jones, D.F., & Howe, R., J. Chem. Soc Commun. 2801. Roberts, E.R.
    1992. Bioremediation of petroleum contaminated sites. Inc, New York. P 1- 26 CRC Press, 1968.
    23. Jose L.R. Gallego, “Bioremediation of diesel-contaminated soils:
    Evaluation of Potential in situ techniques by study of bacterial
    degration”, Biodegration 12, P325-335, 2001.
    24. Janssen D.B., Noordman W.H., Wachter J.H.J., Boer G.J., The enhancement by
    surfactants of hexadecane degradation by pseudomonas aeruginosa varies
    with substrate availability. Journal of Biotechnology. 94, 195-212., 2002.
    25. Kappeli, O.,&W.R. Finnerty., Partition of alkane by an extracellular
    vesicle derived from hexadecane-grown Acinetobacter. J. Bacteriol. 140 707-
    712., 1979.
    26. J. Sabate, M. Vinas, A.M. Solanas., Laboratory-scale bioremediation
    experiments on hydrocarbon-contaminated soils. Internation
    Biodeterioration & Biodegradation 54 19-25., 2004.
    27. Kanga, S.H., Bonner, J.S., Page, C.A., Mills, M.A., Autenrieth, R.L.,
    Solubilization of naphthalene and methyl-substituted naphthalenes
    from crude oil using biosurfactants. Environmental Science and
    Technology 31, 556-561., 1997
    28. L. Molina-Barahona, R. Rodriguez-Vazquez, M. Hernandez-Velasco,A. Mendoza-
    Cantu, A. Albores., Diesel removal from contaminated
    soils by biostimulation and supplementation with crop residues. Applied
    soil Ecology (27) 165-175., 2004.
    29. Leathy, J.G.&R.A. Colwell., Microbial degration of hydrocarbons in the
    environmental. Microbiological Reviews. 54:305-315., 1990.
    30. Luis G. Torres, Neftali Rojas, Guadalupe Bautista, Rosario Iturbe., Effect
    of temperature and surfactants’s HLB and dose over the TPH-diesel
    biodegradation process in aged soils. Process Biochemistry 40 3296-3302.,
    2005.
    31. M.T. Balba, N. Al-Awadhi, R. Al-Daher., Bioremediation of oil-contaminated
    soil: microbiological methods for feasibility assessment and field
    evaluation. Journal of Microbiological Methods (32) 155-164., 1998.
    32. R.Boopathy., Factors limiting bioremediation technologies. Bioresource
    Technology (74) 63-67., 2000.
    33. Rahman, K.S.M., Rahman, T.J., Kourkouoas, Y., Petsas, I., Marchant, R.,
    Banat, I.M., Enhanced bioremediation of n-alkane in petroleum sludge using
    bacterial consortium amended with rhamnolipid and micronutrients.
    Bioresource Technology 90, 159-168., 2003.
    34. R Margesin, D. Labbe, F. Schinner et al., Characterization of Hydrocarbon-
    degrading microbial population in contaminated and pristine alpine soil.
    Applied Environmental Microbiol. P. 3085-3092. ,2003.
    35. Singer, M.E., Finnerty, W.R., Microbial metabolism of stratchain and
    branched alkanes. Macmillan Publishing Company, New York, pp.
    1-60., 1984.
    36. Stone, W.A., Jr., Assessing Health Risk Associated with Diesel
    Contaminated Soils and Groundwater., 1991.
    37. Smadar Admon, Michal Green, Yoram Avnimelech, Biodegradation kinetics of
    hydrocarbons in soil during land treatment of oily sludge. Journal
    Bioremediation 5(3) 193-209., 2001.
    38. Shcherbakova, Victoria A., Akimenko, Vasily K., Toxic effect of
    surfactants and probable products of their biodegradation on
    methanogenesis in an anerobic microbial community. Chemosphere 39: 11 1861-
    1870., 1999.
    39. U.S. EPA, How to evaluate alternative cleanup technologies for underground
    storage tank sites: a guide for corrective action plane reviewers, EPA 510-
    R-04-002., 2004.
    40. Yeh D. H., Pannell K. D. & Pavlostathis S. G.., Toxicity and
    Biodegradation screening of nonionic surfactants using sediment
    -derived methanogenac concortia. Wat. Sci. Tech. 38(7):55-62., 1998.
    41. Wreen, B.A., Haines, J.R., Venosa, A.D., Kadkhodayan, M., Suidan, M.T.,
    Effects of nitrogen source on crude oil biodegradation. J. Ind. Microbiol.
    13 515-524., 1994.
    42. Zang, Y., Miller, R.M., Enhanced octadecane dispersion and biodegradation
    by a pseudomonas rhamnolipid surfactant. Applied and Environmental
    Microbiology 58, 3276-3282., 1992.
    43. Zhang, Y.M., Miller, R.M., Effect of rhamnolipid structure on
    solubikization and biodegradation of n-alkanes. Appl. Environ. Microbiol.
    61 2247-2251., 1995.
    44. McCarty , “Environmental Biotechnology”
    45. Kiestecki, K., Biotechnology: Biotransformations,藝軒圖書出版社.329-386.,
    1984.
    46. 楊秋忠,環保菌種助劑之奈米分子優化技術。經濟部學界科專計畫技術報告,2003年
    分子生物技術於環境工程應用三年計畫。
    47. 朱文昌, “生物濾床法處理含BTEX廢氣之研究” , 民國八十五年中興大學環境工程研
    究所碩士論文
    48. 張育傑 , “柴油在土壤中之生物自淨能力研究”, 民國81年台灣大學環境工程研究所
    碩士論文
    49. 許守信, “柴油生物分解動力學研究”, 民國八十八年中原大學化學工程學系碩士論

    50. 吳俊德, “柴油解菌對柴油乳化及分解作用之研究”, 民國八十九年,國立中興大學土
    壤環境科學系博士論文
    51. 陳谷汎, “以生物復育整治2,4二氯酚污染之地下水”, 民國90年中山大學環境工程研
    究所碩士論文
    52. 王志哲, “陰離子及複合(陰離子/中性)界面活性劑系統對BTEX污染土壤復育效率之研
    究”,民國89年中山大學環境工程研究所碩士論文
    53. 吳春生, “以生物曝氣法整治受地下水儲槽洩漏之石化係有機污染物模場研究”, 民
    國九十一年國立中山大學環境工程研究所碩士論文
    54. 黃俊嘉, “以土耕法結合生物堆法處理受柴油污染之土壤”, 民國九十三年國立中山
    大學環境工程研究所碩士論文
    55. 莊晟榜, “Tween系列界面活性劑對微生物降解碳氫化合物之研究”,民國九十一年中
    原大學化學工程學系碩士論文
    56. 周建良, “醣酯類生物界面活性劑rhamnolipid”發酵基質最適化及生產策略之研究,
    民國九十四國立成功大學化學工程研究所碩士論文
    57. 馬志強, “應用生物界面活性劑促進柴油污染土壤中原生菌生物降解效率”, 民國九
    十四年國立成功大學環境工程學系碩士論文
    58. 郭魁士 著,土壤學 中國書局印行
    59. 張有義、郭蘭生 編譯,膠體及界面化學入門 高立書局

    下載圖示 校內:2007-08-28公開
    校外:2008-08-28公開
    QR CODE