| 研究生: |
潘柏岑 Pan, Po-Tsen |
|---|---|
| 論文名稱: |
應用土耕法配合生物添加促進法整治柴油污染土壤之研究 Land farming bioremediation of diesel contaminated soil associated with biostimulation and bioaugmentation |
| 指導教授: |
鄭幸雄
Cheng, S.S. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 164 |
| 中文關鍵詞: | 生物復育 、土耕法 、柴油 |
| 外文關鍵詞: | bioremediation, TPH-d, land farming |
| 相關次數: | 點閱:93 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本實驗主要目的評估以不同生物添加促進方式條件下,藉由類似土耕法(land farming)配合生物堆法(biopile)整治受柴油污染土壤之可行性研究。研究中針對碳氫化合物中C10~C28範圍柴油(diesel)為土壤中之目標污染物(target compound),分別於實驗室進行批次實驗(lab-scale)及離場模場(ex-situ pilot)實驗操作,探討不同實驗因子對於微生物好氧分解柴油效率之影響。
批次實驗中(lab-scale)探討生物界面活性劑(rhamnolipid, 代號r)與化學合成界面活性劑(Tween 80, 代號t)於批次試驗中微生物分解柴油情形,操作條件分別為(1)添加不同柴油濃度土壤中;(2)添加不同種類界面活性劑(r 及 t);(3)添加不同濃度界面活性劑於土壤中;(4)不同翻堆(通氣)週期。
實驗結果顯示,含不同柴油濃度高低之生物堆(biopile)中施行生物促進方式(biostimutation)表現均優於控制組。以每隔2天週期翻堆者表現為例,添加rhamnolipid優於添加Tween 80,其土壤中柴油去除效果及其一階反應速率表現最為優異。以添加低濃度界面活性劑與低濃度柴油於土壤中為例(土堆代號為2FLrLd),經連續操作80天後,其一階反應速率常數K值為0.0414 day-1、去除效率=95%,反應期間第42天時土壤柴油濃度降為1000 mg/kg dry soil以下。相同背景土壤柴油濃度下,控制組(BK1)連續操作80天,其K值為0.0089 day-1、去除效率=68%。
模場中以生物促進方式,包括添加額外營養(Nutrient enchance, NE)、添加生物界面活性劑(BS)及生物放大(bioaugmentation, BA1)的方式,評估以土壤翻堆技術具有較佳處理效果。結果顯示,前30天各土堆(biopile)表現為:一階反應速率(K值,單位day-1): BA1(0.0592 )>BS(0.0205)>Ct(控制組)(0.0065)。去除效率(單位 %): BA1(77)>NE(74)>BS(40)>Ct(15)。模場試驗中,以生物刺激(NE 及BS)與生物添加方式(BA1)去除效果遠大於控制組(Ct)且縮短整治時間。
Abstract
In recent years, a variety of researches has been developed the technology of soil treatment -- bioremediation is one of them, due to its advantages of low-cost and less harmful to the environment; it is considered to have the most potential in soil treatment and is a technology that can be further developed. The effect of biosurfactant (Rhamnolipid) and synthesized surfactant (Tween 80) on diesel degradation were compared in batch test at laboratory scale.
The results obtained from batch test showed that the most effective diesel degradation occurred with lower concentration of biosurfactant (10mg/kg dry soil). On the contrary, high concentration of biosurfactant (80mg/kg dry soil) inhibited diesel degradation.
The 16 runs were tested with different combinations of the following components: 1) concentrations of diesel (3,200 and 15,000 mg/kg), 2) surfactants (Tween 80 and rhamnolipid), 3) concentrations of the surfactants (10 and 80 mg/kg), and 4) cycles of soil agitation (2 days and 10 days). The results indicated that the removal efficiency of the total petroleum hydrocarbon-diesel (TPH-d) in designed groups were all superior to that in the controlled groups. The 2-day agitation group created effective ventilation which resulted in a better degradation rate than that of the 5-day agitation group. In 2-day agitation, all of the groups produced an advanced removal efficiency of TPH-d (68% - 95%) over that of the 10-day agitation (26% - 83%); with one only exception (addition of 10 mg/kg of rhamnolipid to the 15,000 mg/kg of diesel-contaminated soil). In the case of the 3,200 mg/kg-diesel contaminated soil, addition of the 10 mg/kg of rhamnolipid performed better than that of the 80 mg/kg, regardless of the agitation rates. Also, TPH-d removal efficiency was significantly improved by adding rhamnolipid instead Tween 80. The optimal condition, TPH-d removal efficiency of 95%, was attained by the group with the 10 mg/kg of rhamnolipid addition and 2-day agitation rate, employed in the case of the 3,200 mg/kg-diesel contaminated soil. Similarly, in the case of the 15,000 mg/kg-diesel contaminated soil, addition of 10 mg/kg of surfactants tended to be more effective than that of 80 mg/kg of surfactants. In the same condition, the addition of rhamnolipid still tended to be more helpful than that of Tween 80. However, two equivalent optimal conditions (removal efficiency of 78-79%) were achieved in the highly contaminated soils by both of the surfactants, 80 mg/kg of rhamnolipid addition and 10 mg/kg of Tween 80 addition, with the same 2-day agitation rate. Three conclusions were draw from this study: 1) agitation rate is one of the most important factors that determines the bioremediation performance, 2) relatively low addition of surfactants (10 mg/kg) produced a greater TPH-d removal efficiency, 3) rhamnolipid is beneficial for bioremediation of petroleum hydrocarbons, not only because of its biodegradability, but also the resultant TPH-d removal efficiency.
A recently diesel-contaminated soil site was investigated to apply different enhanced bioremediation process with pilot scale of 0.5m3 biopiles. Conceptual design of four biopiles was conducted to provide:(1).well-mixing biopile with the indigenous microbe as control test, Ct, (2).nutrient enhanced biopile added with BH medium of mineral nutrients, NE, (3).bioaugmentation with three types of enrichmental culture of diesel-degrading bacteria, BA1, (4).biostimutation with biosurfactant (rhamnolipid) to emulsify the entrapped diesel adsorbed onto the soil pore, BS. In this study, three strains of diesel-degrading bacteria were isolated from the diesel contaminated top soil in the local field. The biosurfactant of rhamnolipid was produced from the enriched culture of Pseudomonas erugenosa with special cultivation and centrifugal separation.
Therefore, the TPH-d removal efficiencies achieved at different levels in these four biopiles, Ct=15%, NE=74%, BA1=77%, BS=40%. Bioremediation performance was promoted by the bioaugmentation, while the biosurfactant addition (BS) attainted fair performance. The indigenous biopile (Ct) was still inhibited by the high loading of diesel with 3,600 mg TPH-d/kg dry soil. The first order reaction rate constant K values (day-1) was evaluated as BA1(0.0592)>NE(0.0442)>BS(0.0205)>Ct(0.0065). Molecular biomonitoring methods were developed to identify the diesel-degrading bacteria existed in all biopiles:(1).DGGE electrophoresis showed the predominant group was Pseudomonas sp. presented in three biopiles of NE, BA1 and BS, (2).Microarray biochip could identify more species of the diesel-degrading bacteria. This pilot study of three months of biopile farming approved that bioaugmentation and biostimulation could enchance the bioremediation of TPH-d contaminated soil.
參考文獻
1. Atlas, R.M., Microbial degradation of petroleum hydrocarbons:
an environmental perspective. Microb. Rev. 45: 180-209, 1981.
2. Atlas, R.M., Petroleum biodegradation and oil spill bioremediation.
Marine Pollution Bulletin. 31: 178-182, 1995.
3. Aldrett, S., Bonner, J.S., McDonalds, T.J., Millers, M.A., Autenrieth,
R.L., Degradation of crude oil enhanced by commercial microbials cultures.
American Petroleum Insitute, Washington, DC, pp.995-996., 1997.
4. Bossert, I. & Bartha, R., The fate of petroleum in soil ecosystems. In
petroleum Microbiology, Atlas R.M., Macmillan, New York., 1984.
5. Beal, R., Betts, W.B., Role of rhamnolipid biosurfactants in uptake and
mineralization of hexadecane in pseudomonas aeruginosa. Journal of Applied
Microbiology 89 158-168., 2000.
6. Banat I.M., Biosurfactants production and possible uses in microbial
enhanced oil recovery and oil pollution remediation. Fuel and Energy. 36,
290-298., 1995.
7. Beal, R., Betts, W.B., Role of rhamnolipid biosurfactants in uptake and
mineralization of hexadecane in pseudomonas aeruginosa. Journal of Applied
Microbiology 89 158-168., 2000.
8. Colwell, R. R. & J. D. Walker., Ecological aspects of microbial
degradation of petroleum in marine environmental. Crit. Rev. Microbiol.
Vol. 5, 423-445., 1977.
9. Connan Jacques., Biodegradation of Crude Oils in Reserviors, in Advanced
in Petroleum Geochemistry, vol1, Brooks, Jim., and Dietrich, Welte., Ed.,
Academic Press., 1984.
10. Cooper, D.G., Biosurfactants. Microbiol. Sci. 3, 145149., 1986.
11. Calabrese, E.J., and Kostecki, P.T. Soil contaminated by petroleum:
Environmental and Public Health Effects. JOHN WILEY&SONS.
NEW York. 5-18, 1988.
12. Cerniglia, C.E., Biodegradation of Polycyclic aromatic hydrocarbons.
Biodegradation 3 351-368. , 1992.
13. Christopher W. Kaplan and Christopher L. Kitts, Bacterial succession in
petroleum land treatment unit. Applied Environmental Microbiology, P.1777-
1786., 2003.
14. Cruden, D., J.H. Wolfram, R.D. Rogers, and D.T. Gibson., Physiological
properties of a pseudomonas strain which grows with p-xylene in a two
phase (organic-aqueous)medium. Appl. Environ. Microbiol. 58: 2723-2729.,
1992.
15. Churchill, S.A., Griffin, R.A., Jones, L.P., Churchill, P.F.,
Biodegradation rate enhancement of hydrocarbons by an oleophilic
fertilizer and a rhamnolipid biosurfactant. Journal of Environmental
Quality 24, 19-28., 1995.
16. Catherine N. Mulligan, Environmental applications for biosurfactants.
Environmental Pollution 133 183-198., 2004.
17. Desai J.D., Banat I.M., Microbial production of surfactants and
their commercial potential. Microbiology and Molecular Biology
Reviews. 61, 47-64., 1997.
18. Helenius A. and Simons K., Solubilizationof membrances by detergents.
BioChem. Biophys. Acta. 415: 29-79, 1975.
19. Herman, D.C., Arotiola, J.F., Miller, R.M., Removal of cadmium,lead and
zinc from soil by a rhamnolipid biosurfactant. Environmental Science and
Technology. 29 2280=2295., 1995.
20. Guerin William F. & Jones E. Galen, Mineralization of phenanthrene by a
Mycobacterium sp. Applied and environmental microbiology. 54(4):937-944.,
1988.
21. Ito, S.,& S. Inoue., Sophorolipids from Torulopsis bombicola:
possible relation to alkane uptake. Appl. Environ. Microbiol. Lett.38
299-308., 1982.
22. Jones, D.F., & Howe, R., J. Chem. Soc Commun. 2801. Roberts, E.R.
1992. Bioremediation of petroleum contaminated sites. Inc, New York. P 1- 26 CRC Press, 1968.
23. Jose L.R. Gallego, “Bioremediation of diesel-contaminated soils:
Evaluation of Potential in situ techniques by study of bacterial
degration”, Biodegration 12, P325-335, 2001.
24. Janssen D.B., Noordman W.H., Wachter J.H.J., Boer G.J., The enhancement by
surfactants of hexadecane degradation by pseudomonas aeruginosa varies
with substrate availability. Journal of Biotechnology. 94, 195-212., 2002.
25. Kappeli, O.,&W.R. Finnerty., Partition of alkane by an extracellular
vesicle derived from hexadecane-grown Acinetobacter. J. Bacteriol. 140 707-
712., 1979.
26. J. Sabate, M. Vinas, A.M. Solanas., Laboratory-scale bioremediation
experiments on hydrocarbon-contaminated soils. Internation
Biodeterioration & Biodegradation 54 19-25., 2004.
27. Kanga, S.H., Bonner, J.S., Page, C.A., Mills, M.A., Autenrieth, R.L.,
Solubilization of naphthalene and methyl-substituted naphthalenes
from crude oil using biosurfactants. Environmental Science and
Technology 31, 556-561., 1997
28. L. Molina-Barahona, R. Rodriguez-Vazquez, M. Hernandez-Velasco,A. Mendoza-
Cantu, A. Albores., Diesel removal from contaminated
soils by biostimulation and supplementation with crop residues. Applied
soil Ecology (27) 165-175., 2004.
29. Leathy, J.G.&R.A. Colwell., Microbial degration of hydrocarbons in the
environmental. Microbiological Reviews. 54:305-315., 1990.
30. Luis G. Torres, Neftali Rojas, Guadalupe Bautista, Rosario Iturbe., Effect
of temperature and surfactants’s HLB and dose over the TPH-diesel
biodegradation process in aged soils. Process Biochemistry 40 3296-3302.,
2005.
31. M.T. Balba, N. Al-Awadhi, R. Al-Daher., Bioremediation of oil-contaminated
soil: microbiological methods for feasibility assessment and field
evaluation. Journal of Microbiological Methods (32) 155-164., 1998.
32. R.Boopathy., Factors limiting bioremediation technologies. Bioresource
Technology (74) 63-67., 2000.
33. Rahman, K.S.M., Rahman, T.J., Kourkouoas, Y., Petsas, I., Marchant, R.,
Banat, I.M., Enhanced bioremediation of n-alkane in petroleum sludge using
bacterial consortium amended with rhamnolipid and micronutrients.
Bioresource Technology 90, 159-168., 2003.
34. R Margesin, D. Labbe, F. Schinner et al., Characterization of Hydrocarbon-
degrading microbial population in contaminated and pristine alpine soil.
Applied Environmental Microbiol. P. 3085-3092. ,2003.
35. Singer, M.E., Finnerty, W.R., Microbial metabolism of stratchain and
branched alkanes. Macmillan Publishing Company, New York, pp.
1-60., 1984.
36. Stone, W.A., Jr., Assessing Health Risk Associated with Diesel
Contaminated Soils and Groundwater., 1991.
37. Smadar Admon, Michal Green, Yoram Avnimelech, Biodegradation kinetics of
hydrocarbons in soil during land treatment of oily sludge. Journal
Bioremediation 5(3) 193-209., 2001.
38. Shcherbakova, Victoria A., Akimenko, Vasily K., Toxic effect of
surfactants and probable products of their biodegradation on
methanogenesis in an anerobic microbial community. Chemosphere 39: 11 1861-
1870., 1999.
39. U.S. EPA, How to evaluate alternative cleanup technologies for underground
storage tank sites: a guide for corrective action plane reviewers, EPA 510-
R-04-002., 2004.
40. Yeh D. H., Pannell K. D. & Pavlostathis S. G.., Toxicity and
Biodegradation screening of nonionic surfactants using sediment
-derived methanogenac concortia. Wat. Sci. Tech. 38(7):55-62., 1998.
41. Wreen, B.A., Haines, J.R., Venosa, A.D., Kadkhodayan, M., Suidan, M.T.,
Effects of nitrogen source on crude oil biodegradation. J. Ind. Microbiol.
13 515-524., 1994.
42. Zang, Y., Miller, R.M., Enhanced octadecane dispersion and biodegradation
by a pseudomonas rhamnolipid surfactant. Applied and Environmental
Microbiology 58, 3276-3282., 1992.
43. Zhang, Y.M., Miller, R.M., Effect of rhamnolipid structure on
solubikization and biodegradation of n-alkanes. Appl. Environ. Microbiol.
61 2247-2251., 1995.
44. McCarty , “Environmental Biotechnology”
45. Kiestecki, K., Biotechnology: Biotransformations,藝軒圖書出版社.329-386.,
1984.
46. 楊秋忠,環保菌種助劑之奈米分子優化技術。經濟部學界科專計畫技術報告,2003年
分子生物技術於環境工程應用三年計畫。
47. 朱文昌, “生物濾床法處理含BTEX廢氣之研究” , 民國八十五年中興大學環境工程研
究所碩士論文
48. 張育傑 , “柴油在土壤中之生物自淨能力研究”, 民國81年台灣大學環境工程研究所
碩士論文
49. 許守信, “柴油生物分解動力學研究”, 民國八十八年中原大學化學工程學系碩士論
文
50. 吳俊德, “柴油解菌對柴油乳化及分解作用之研究”, 民國八十九年,國立中興大學土
壤環境科學系博士論文
51. 陳谷汎, “以生物復育整治2,4二氯酚污染之地下水”, 民國90年中山大學環境工程研
究所碩士論文
52. 王志哲, “陰離子及複合(陰離子/中性)界面活性劑系統對BTEX污染土壤復育效率之研
究”,民國89年中山大學環境工程研究所碩士論文
53. 吳春生, “以生物曝氣法整治受地下水儲槽洩漏之石化係有機污染物模場研究”, 民
國九十一年國立中山大學環境工程研究所碩士論文
54. 黃俊嘉, “以土耕法結合生物堆法處理受柴油污染之土壤”, 民國九十三年國立中山
大學環境工程研究所碩士論文
55. 莊晟榜, “Tween系列界面活性劑對微生物降解碳氫化合物之研究”,民國九十一年中
原大學化學工程學系碩士論文
56. 周建良, “醣酯類生物界面活性劑rhamnolipid”發酵基質最適化及生產策略之研究,
民國九十四國立成功大學化學工程研究所碩士論文
57. 馬志強, “應用生物界面活性劑促進柴油污染土壤中原生菌生物降解效率”, 民國九
十四年國立成功大學環境工程學系碩士論文
58. 郭魁士 著,土壤學 中國書局印行
59. 張有義、郭蘭生 編譯,膠體及界面化學入門 高立書局