簡易檢索 / 詳目顯示

研究生: 周鉑頵
CHOU, BO-JUN
論文名稱: 界面工程於鈣鈦礦太陽能電池之應用:從鈍化處理至自組裝分子修飾研究
Application of Interface Engineering in Perovskite Solar Cells: From Passivation Treatment to Self-Assembled Materials Modification
指導教授: 郭宗枋
Guo , Tzung-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 110
中文關鍵詞: 界面工程自組裝單層分子表面鈍化
外文關鍵詞: Interface engineering, Self-assembled Materials, Surface passivation
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Extended Abstract II 致謝 VIII 目錄 IX 圖目錄 XII 表目錄 XVI 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 1-3 論文大綱 3 第二章 文獻回顧與理論基礎 4 2-1 前言 4 2-2 鈣鈦礦太陽能電池發展進程 4 2-3 鈣鈦礦太陽能電池工作原理 13 2-4 太陽能電池之量測定義、等校電路及光伏參數 16 2-4-1標準光源定義 16 2-4-2太陽能電池基本特性分析 17 2-5 自組裝單層分子(SAM) 22 2-6 鈍化材料機制與應用 29 2-7 Tandem Solar Cell 的發展 33 2-8 章節總結 35 第三章 實驗操作流程與量測分析方法 36 3-1 鈣鈦礦太陽能電池元件製備流程 36 3-1-1黃光顯影蝕刻製程 36 3-1-2 ITO基板清洗 37 3-1-3電洞傳輸層 38 3-1-4鈣鈦礦主動層 39 3-1-5電子傳輸層 39 3-1-6金屬電極 39 3-2 元件特性量測 40 3-2-1單結鈣鈦礦太陽能電池J-V量測 40 3-2-2 tandem太陽能電池J-V量測 41 3-2-3外部量子轉換效率(External Quantum Efficiency, EQE)量測 42 3-3 薄膜量測 43 3-3-1 X-光射線繞射儀 (X-ray Powder Diffractometer, XRD) 43 3-3-2描式電子顯微鏡 (Scanning Electron Microscope,SEM) 44 3-3-3光致發光螢光光譜儀(Photoluminescence Spectroscopy, PL) 45 3-3-4接觸角量測儀( Contact angle,CA ) 46 第四章 實驗結果與討論 47 4-1 前言 47 4-2 自組裝分子修飾策略與界面調控 48 4-2-1 MePA-CPA 之濕潤性調控與成膜性改善策略 49 4-2-2 SAM 能階匹配與元件效能 55 4-2-3 SAM 疊加處理對表面品質之影響 63 4-3 鈍化材料對界面缺陷與穩定性之影響 64 4-3-1 PEAI 鈍化 65 4-3-2 LiF 鈍化層之導入與元件表現 68 4-3-3 TEACl 與 PI 鈍化層之比較分析 70 4-4 Tandem Solar Cell 製作 75 4-5 章節總結 79 第五章 結論與未來工作 81 5-1結論 81 5-2未來工作 81 參考文獻 83

    [1] M. E. Becquerel. “M´emoire sur les effets ´electriques produits sous l’influence des rayons solaires”, C. R. Acad. Sci. 9, 561 (1839).
    [2] W. Smith, “Effect of light on selenium during the passage of an electric current”, Nature 7, 303 (1873).
    [3] D. M. Chapin, C. S. Fuller, G. L. Pearson,“A new silicon p-n junction photocell for converting solar radiation into electrical power”, J. Appl. Phys. 25, 676 (1954).
    [4] B. C. Brusso, “A brief history of the energy conversion of light”, IEEE Ind. Appl. Mag. 25, 8 (2019).
    [5] F. Haase, C. Hollemann, S. Schäfer, A. Merkle, M. Rienäcker, J. Krügener, R. Brendel, R. Peibst, “Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells”, Sol. Energy Mater. Sol. Cells 186,184 (2018).
    [6] D. E. Carlson, C. R. Wronski, "Amorphous silicon solar cell", Appl. Phys. Lett. 28, 671 (1976).
    [7] H. Hahn, G. Frank, W. Klingler, A. D. Meyer, G. Störger, "Untersuchungen über ternäre Chalkogenide. V. Über einige ternäre Chalkogenide mit Chalkopyritstruktur", Z. Anorg. Allg. Chem. 271, 3 (1953).
    [8] L. Kazmerski, F. White, G. Morgan, "Thin-film CuInSe2/CdS heterojunction solar cells", Appl. Phys. Lett. 29, 268 (1976).
    [9] D. Bonnet, H. Rabenhorst, "New results on the development of a thin-film p-CdTe-n-CdS heterojunction solar cell", 9th IEEE Photovoltaic Spec. Conf. 129 (1972).
    [10] B. M. Kayes, H. Nie, R. Twist, S. G. Spruytte, F. Reinhardt, I. C. Kizilyalli, G. S. Higashi, "27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination", 37th IEEE PVSC. 000004 (2011).
    [11] N. Shah, A. Shah, P. Leung, S. Khan, K. Sun, X. Zhu, Q. Liao, "A review of third generation solar cells", Processes 11, 1852 (2023).
    [12] B. O'regan, M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films", Nature 353, 737 (1991).
    [13] National Renewable Energy Laboratory, https://www.nrel.gov/pv/cell-efficiency.html access April, 3, (2025)
    [14] S. Olaleru, J. Kirui, D. Wamwangi, K. T. Roro, B. Mwakikunga, "Perovskite solar cells: The new epoch in photovoltaics", Sol. Energy 196, 295 (2020).
    [15] N.-G. Park, "Perovskite solar cells: an emerging photovoltaic technology", Mater. Today 18, 65 (2015).
    [16] M. Rini, R. a. Tobey, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R. W. Schoenlein, A. Cavalleri, "Control of the electronic phase of a manganite by mode-selective vibrational excitation", Nature 449,72 (2007).
    [17] C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, Z. Guo, "Formability of abx3 (x= f, cl, br, i) halide perovskites", Struct. Sci. 64, 702 (2008).
    [18] W. Travis, E. Glover, H. Bronstein, D. Scanlon, R. Palgrave, "On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system", Chem. Sci. 7, 4548 (2016).
    [19] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, “Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut”, Nano Lett. 15, 3692 (2015).
    [20] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, "Electron-hole diffusion lengths>175 μm in solution-grown CH3NH3PbI3 single crystals", Science 347,6225 (2015).
    [21] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells”, Nano Lett. 13, 1764 (2013).
    [22] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells", J. Am. Chem. Soc. 131, 6050 (2009).
    [23] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell", Nanoscale 3, 4088 (2011).
    [24] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%", Sci. Rep. 2, 591 (2012).
    [25] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites", Science 338, 210403 (2012).
    [26] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, M. Gratzel, "Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells", J. Am. Chem. Soc. 134, 17396 (2012).
    [27] M. Liu, M. B. Johnston, H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition", Nature 501, 395 (2013).
    [28] J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, T. C. Wen,"CH3NH3PbI3 perovskite/fullerene planar‐heterojunction hybrid solar cells", Adv. Mater. 25, 27 (2013).
    [29] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, "Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells", Energy Environ. Sci. 7, 3 (2014).
    [30] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, "Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency", Energy Environ. Sci. 9, 6 (2016).
    [31] N. Marinova, S. Valero, J. L. Delgado, “Organic and perovskite solar cells: working principles, materials and interfaces”, J. Colloid Interface Sci. 488, 373 (2017).
    [32] J. Hofinger, S. Weber, F. Mayr, A. Jodlbauer, M. Reinfelds, T. Rath, G. Trimmel, M. C. Scharber, "Wide-bandgap organic solar cells with a novel perylene-based non-fullerene acceptor enabling open-circuit voltages beyond 1.4 V", J. Mater. Chem. A 10, 6 (2022).
    [33] D. B. Riley, P. Meredith, A. Armin, O. J. Sandberg, "Role of exciton diffusion and lifetime in organic solar cells with a low energy offset", J. Phys. Chem. Lett. 13, 4402 (2022).
    [34] J. Rostalski, D. Meissner, “Monochromatic versus solar efficiencies of organic solar cells”, Sol. Energy Mater. Sol. Cells 61, 87 (2000).
    [35] A. Moliton, J. M. Nunzi, “How to model the behaviour of organic photovoltaic cells”, Polym. Int. 55, 583 (2006).
    [36] J. Cubas, S. Pindado, C. De Manuel, “Explicit expressions for solar panel equivalent circuit parameters based on analytical formulation and the Lambert W-function”, Energies 7, 4098 (2014).
    [37] M. K. da Silva, M. S. Gul, H. Chaudhry, “Review on the sources of power loss in monofacial and bifacial photovoltaic technologies”, Energies 14, 7935 (2021).
    [38] B. Qi, J. Wang, "Fill factor in organic solar cells", Phys. Chem. Chem. Phys. 15, 8972 (2013) .
    [39] T. Xu, Q. Qiao, “Conjugated polymer-inorganic semiconductor hybrid solar cells”, Energy Environ. Sci. 4, 513 (2011).
    [40] W. Bigelow, D. Pickett, W. Zisman, "Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids", J. Colloid Sci. 1, 513 (1946).
    [41] D. L. Allara, R. G. Nuzzo,"Spontaneously organized molecular assemblies.1. Formation, dynamics, and physical properties of n-alkanoic acids adsorbed from solution on an oxidized aluminum surface", Langmuir 1, 45 (1985).
    [42] A. Abrusci, S. D. Stranks, P. Docampo, H.-L. Yip, A. K.-Y. Jen, H. J. Snaith, "High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers", Nano Lett. 13, 3124 (2013).
    [43] A. Magomedov, A. Al-Ashouri, E. Kasparavičius, S. Strazdaite, G. Niaura, M. Jošt, T. Malinauskas, S. Albrecht, V. Getautis, “Self‐assembled hole transporting monolayer for highly efficient perovskite solar cells”, Adv. Energy Mater. 8, 1801892 (2018).
    [44] A. A. Ashouri, A. Magomedov, M. Roß, M. Jošt, M. Talaikis, G. Chistiakova, T. Bertram, J. A. Márquez, E. Köhnen, E. Kasparavičius, S. Levcenco, L. G. Escrig, C. J. Hages, R. Schlatmann, B. Rech, T. Malinauskas, T. Unold, C. A. Kaufmann, L. Korte, G. Niaura, V. Getautis, S. Albrecht, “Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells”, Energ Environ Sci. 12, 3356 (2019).
    [45] A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, J. A. Márquez, A. B. M. Vilches, E. Kasparavicius, J. A. Smith, N. Phung, D. Menzel, M. Grischek, L. Kegelmann, D. Skroblin, C. Gollwitzer, T. Malinauskas, M. Jošt, G. Matič, B. Rech, R. Schlatmann, M. Topič, L. Korte, A. Abate, B. Stannowski, D. Neher, M. Stolterfoht, T. Unold, V. Getautis, S. Albrecht, “Monolithic perovskite/silicon tandem solar cell with>29% efficiency by enhanced hole extraction”, Science 370, 1300 (2020).
    [46] S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang, L. Zhan, X. Jiang, Y. Li, X. Ji, S. Liu, M. Yu, F. Yu, Y. Zhang, R. Wu, Z. Liu, Z. Ning, D. Neher, L. Han, Y. Lin, H. Tian, W. Chen, M. Stolterfoht, L. Zhang, W.-H. Zhu, Y. Wu, "Minimizing buried interfacial defects for efficient inverted perovskite solar cells", Science 380, 404 (2023).
    [47] S. Y. Kim, S. J. Cho, S. E. Byeon, X. He, H. J. Yoon, "Self‐assembled monolayers as interface engineering nanomaterials in perovskite solar cells", Adv. Energy Mater. 10, 2002606 (2020).
    [48] K. Choi, H. Choi, J. Min, T. Kim, D. Kim, S. Y. Son, G.-W. Kim, J. Choi, T. Park, "A short review on interface engineering of perovskite solar cells: a self‐assembled monolayer and its roles", Solar RRL 4, 1900251 (2020).
    [49] W. Fu, A. I. A. Soliman, Y. Zheng, Y. Zhou, Y. Zhang, S. Shan, H. Chen, "Self-assembled monolayers for perovskite solar cells", Rev. Mater. Res. 100017 (2025).
    [50] J. Hu, W. Fu, X. Yang, H. Chen, "Self‐assembled monolayers for interface engineering in polymer solar cells", J. Polym. Sci. 60, 2175 (2022).
    [51] A. Tada, Y. Geng, M. Nakamura, Q. Wei, K. Hashimoto, K. Tajima, "Interfacial modification of organic photovoltaic devices by molecular self-organization", Phys. Chem. Chem. Phys. 14, 3713 (2012).
    [52] S. Khodabakhsh, B. M. Sanderson, J. Nelson, T. S. Jones, "Using self‐assembling dipole molecules to improve charge collection in molecular solar cells", Adv. Funct. Mater. 16, 95 (2006).
    [53] A. Sharma, A. Haldi, W. J. Potscavage Jr., P. J. Hotchkiss, S. R. Marder, B. Kippelen, "Effects of surface modification of indium tin oxide electrodes on the performance of molecular multilayer organic photovoltaic devices", J. Mater. Chem. 19, 5298 (2009).
    [54] X. Ji, S. Zhang, F. Yu, H. Zhang, L. Zhan, Y. Hu, W.-H. Zhu, Y. Wu, "Efficient wide-bandgap perovskite solar cells with open-circuit voltage deficit below 0.4 V via hole-selective interface engineering", Sci. China Chem. 67, 2102 (2024).
    [55] M. A. Truong, T. Funasaki, L. Ueberricke, W. Nojo, R. Murdey, T. Yamada, S. F. Hu, A. Akatsuka, N. Sekiguchi, S. Hira, L. L. Xie, T. Nakamura, N. Shioya, D. Kan, Y. Tsuji, S. Iikubo, H. Yoshida, Y. Shimakawa, T. Hasegawa, Y. Kanemitsu, T. Suzuki, A. Wakamiya, "Tripodal triazatruxene derivative as a face-on oriented hole-collecting monolayer for efficient and stable inverted perovskite solar cells", J. Am. Chem. Soc. 145, 7528 (2023).
    [56] M. Liu, L. Bi, W. Jiang, Z. Zeng, S. W. Tsang, F. R. Lin, A. K. Y. Jen, "Compact hole‐selective self‐assembled monolayers enabled by disassembling micelles in solution for efficient perovskite solar cells", Adv. Mater. 35, 2304415 (2023).
    [57] I. Doudevski, D. K. Schwartz, "Concentration dependence of self-assembled monolayer island nucleation and growth", J. Am. Chem. Soc. 123, 6867 (2001).
    [58] M. J. Hostetler, R. W. Murray, "Colloids and self-assembled monolayers", Curr. Opin. Colloid Interface Sci. 2, 42 (1997).
    [59] H. S. Cui, L. S. Huang, S. Zhou, C. Wang, X. Z. Hu, H. L. Guan, S. X. Wang, W. L. Shao, D. X. Pu, K. L. Dong, J. Zhou, P. Jia, W. Z. Wang, C. Tao, W. J. Ke, G. J. Fang, "Lead halide coordination competition at buried interfaces for low VOC-deficits in wide-bandgap perovskite solar cells", Energy Environ. Sci. 16, 5992 (2023).
    [60] B. T. Dong, M. Y. Wei, Y. H. Li, Y. G. Yang, W. Ma, Y. S. Zhang, Y. B. Ran, M. J. Cui, Z. R. Su, Q. P. Fan, Z. Z. Bi, T. Edvinsson, Z. Q. Ding, H. X. Ju, S. You, S. M. Zakeeruddin, X. Li, A. Hagfeldt, M. Grätzel, Y. H. Liu, "Self-assembled bilayer for perovskite solar cells with improved tolerance against thermal stresses", Nat. Energy 1,12 (2025).
    [61] Y. Zhao, X. Luan, L. Han, Y. Wang "Post‐Assembled Alkylphosphonic Acids for Efficient and Stable Inverted Perovskite Solar Cells", Adv. Funct. Mater. 34, 2405646 (2024).
    [62] P. Zhao, B. J. Kim, H. S. Jung, "Passivation in perovskite solar cells: A review." Mater. Today Energy 7, 267 (2018).
    [63] F. Gao, Y. Zhao, X. Zhang, J. You, "Recent progresses on defect passivation toward efficient perovskite solar cells", Adv. Energy Mater. 10, 1902650 (2020).
    [64] Q. Jiang, Y. Zhao, X. W. Zhang, X. L. Yang, Y. Chen, Z. M. Chu, Q. F. Ye, X. X. Li, Z. G. Yin, J. B. You "Surface passivation of perovskite film for efficient solar cells", Nat. Photon. 13, 460 (2019).
    [65] C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, P. Denk, "Effect of LiF/metal electrodes on the performance of plastic solar cells", Appl. Phys. Lett. 80, 1288 (2002).
    [66] K. C. Hsiao, M. H. Jao, B. T. Li, T. H. Lin, S. H. C. Liao, M. C. Wu, W. F. Su, "Enhancing efficiency and stability of hot casting p–i–n perovskite solar cell via dipolar ion passivation", ACS Appl. Energy Mater. 2, 4821 (2019).
    [67] D. Menzel, A. Al-Ashouri, A. Tejada, I. Levine, J. A. Guerra, B. Rech, S. Albrecht, L. Korte, "Field effect passivation in perovskite solar cells by a LiF interlayer", Adv. Energy Mater. 12, 2201109 (2022).
    [68] F. Li, X. Deng, F. Qi, Z. Li, D. Liu, D. Shen, M. Qin, S. Wu, F. Lin, S. H. Jang, J. Zhang, X. Lu, D. Lei, C. S. Lee, Z. Zhu, A. K. Y. Jen, "Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency", J. Am. Chem. Soc. 142, 20134 (2020).
    [69] A. S. R. Bati, Y. L. Zhong, P. L. Burn, M. K. Nazeeruddin, P. E. Shaw, M. Batmunkh, “Next-generation applications for integrated perovskite solar cells”, Commun. Mater. 4, 2 (2023).
    [70] C. A. Nelson, N. R. Monahan, X.-Y. Zhu "Exceeding the Shockley–Queisser limit in solar energy conversion", Energy Environ. Sci. 6, 3508 (2013).
    [71] T. Ameri, G. Dennler, C. Lungenschmied, C. J. Brabec"Organic tandem solar cells: A review", Energy Environ. Sci. 2, 347 (2009).
    [72] A. De Vos, "Detailed balance limit of the efficiency of tandem solar cells", J. Phys. D: Appl. Phys. 13, 839 (1980).
    [73] S. M. Bedair, M. F. Lamorte, J. R. Hauser, "A two‐junction cascade solar‐cell structure", Appl. Phys. Lett. 34, 38 (1979).
    [74] J. Liu, Y. C. He, L. Ding, H. Zhang, Q. Y. Li, L. B. Jia, J. Yu, T. W. Lau, M. H. Li, Y. Qin, X. B. Gu, F. Zhang, Q. B. Li, Y. Yang, S. S. Zhao, X. Y. Wu, J. Liu, T. Liu, Y. J. Gao, Y. L. Wang, X. Dong, H. Chen, P. Li, T. X. Zhou, M. Yang, X. N. Ru, F. G. Peng, S. Yin, M. H. Qu, D. M. Zhao, Z. G. Zhao, M. L. Li, P. H. Guo, H. Yan, C. X. Xiao, P. Xiao, J. Yin, X. H. Zhang, Z. G. Li, B. He, X. X. Xu,"Perovskite/silicon tandem solar cells with bilayer interface passivation", Nature 635, 596 (2024).
    [75] K. Frohna, C. Chosy, A. Al-Ashouri, F. Scheler, Y. H. Chiang, M. Dubajic, J. E. Parker, J. M. Walker, L. Zimmermann, T. A. Selby, Y. Lu, B. Roose, S. Albrecht, M. Anaya, S. D. Stranks, "The impact of interfacial quality and nanoscale performance disorder on the stability of alloyed perovskite solar cells", Nat. Energy 10, 66 (2025).

    無法下載圖示 校內:2030-08-12公開
    校外:2030-08-12公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE