簡易檢索 / 詳目顯示

研究生: 錢柏融
Chien, Po-Jung
論文名稱: 人類粒線體DNA解旋酶Twinkle之結構解析
Structural Study of Human Mitochondrial DNA Helicase Twinkle
指導教授: 吳權娟
Wu, Chyuan-Chuan
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 79
中文關鍵詞: 粒線體基因組粒線體疾病粒線體DNA解旋酶
外文關鍵詞: mitochondral DNA, DNA helicase, Twinkle, superfamily helicase 4, mitochondrial disease
相關次數: 點閱:161下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 粒線體帶有自己的基因組,稱為粒線體DNA (mtDNA)。此基因組負責製造粒腺體中氧化磷酸化系統所需要的關鍵蛋白質。因此,維持mtDNA的品質與完整性,對於粒線體的功能乃至於細胞的健康與存活相當重要。粒線體DNA解旋酶Twinkle為協助mtDNA複製與降解的主要DNA解旋酶,是維持mtDNA品質與完整性的一關鍵酵素。Twinkle屬於超家族解旋酶4 (superfamily helicase 4)其中的一員,這個家族的解旋酶多半會形成一個六聚體、高度協調的環狀結構,並能夠藉由水解ATP來驅動其N端和C端結構域的相互協調 (domain coordination),因此得以在單股DNA上以特定的方向前進,過程中能將另一股DNA移除,以達到解旋雙股DNA的目的。目前已知發生在人類Twinkle上的許多點突變,會破壞此酵素結構域之間的協調性,因此干擾它的聚合並損害其酵素活性,最終導致系統性的粒線體疾病,如進行性外眼肌麻痺,以及粒線體DNA耗竭綜合症7等。最近發表的結構研究,揭示了突變體Twinkle-W315L的兩個原子解析度的模型,均為無DNA結合的八聚體和七聚體結構。然而目前對於野生型Twinkle的分子結構研究,雖然已成功揭示了此酵素家族典型的六聚體環狀結構,但因解析度較低,缺乏結構域之間相互作用的結構訊息。因此,Twinkle作用的結構機制仍是未知。在本研究中,我們的目標為解析人類Twinkle與DNA形成複合體的分子結構,以闡明此酵素在DNA上前進的結構機制。目前,透過分析級粒徑排阻層析法,我們已成功純化出均質的野生型Twinkle。在酵素活性測試中,純化的Twinkle也如預期的表現出ATP依賴性DNA解旋活性,以及與DNA結合的能力。為解析Twinkle與DNA結合的分子結構,我們設計了一髮夾(hairpin) DNA用以模擬複製叉的構型,將其與Twinkle混合形成複合體,並經過粒徑排阻層析法純化。我們將使用負染電子顯微鏡對此複合體進行初步分析。同時,我們也將利用X射線晶體學進行此複合體的結構分析。我們預計本項研究除可闡明Twinkle作用的結構機轉,還可進一步拓展我們對mtDNA維持機制的了解,或可對粒線體功能失常引起的相關疾病之治療,有所助益。

    Mammalian mitochondria contain a circular genome called mitochondrial DNA (mtDNA) which encodes proteins necessary for the oxidative phosphorylation system (OXPHOS). The quality control of mtDNA, therefore, is crucial for maintaining mitochondrial function. Mitochondrial DNA helicase Twinkle plays a vital role in mtDNA maintenance by acting as the master helicase in both replication and degradation of the genome. The enzyme belongs to superfamily helicase 4 (SF4). This family of helicases oligomerize to form a highly coordinated, ring-like architecture. Their DNA unwinding activity relies on an ATP-driven coordination between their N-terminal and C-terminal domains which enables these helicases to translocate on DNA in a specific direction. In the case of Twinkle, residue substitutions that disrupt the domain coordination harm its activity, resulting in systemic mitochondrial diseases such as progressive external ophthalmoplegia (PEO) and mitochondrial DNA depletion syndrome 7 (MTDPS7). A recent published structural study of Twinkle uncovered two atomic-resolution models of a disease-causing variant (Twinkle-W315L), adopting DNA-free octameric and heptameric states. However, harmed by the structural heterogeneity of wild-type Twinkle, so far, its structural analysis only resulted in a cryo-EM map around 11.6 Å. The structure although successfully revealed a classical hexameric-ring architecture of SF4 helicases, the structural information regarding interplay with DNA and ATP-driven domain coordination, namely the molecular mechanism of the enzyme’s action, is still lacking. In the present study, we are aiming to dissect the molecular structure of human Twinkle in complex with DNA. To this aim, recombinant Twinkle protein has been successfully purified to homogeneous. After a two-step polishing by analytical size-exclusion chromatography (SEC), we have successfully obtained pure, active wild-type Twinkle exhibiting DNA-binding and ATP-stimulated DNA unwinding activities. By in vitro complex assembly, we have putatively obtained the complex of Twinkle bound with a forked hairpin DNA and cofactors as revealed by SEC. The sample will soon be subjected to negative-stain EM for analysis. In the meanwhile, crystallization screen of the Twinkle-DNA complex will also be conducted. Taking together, we anticipate our study will uncover the structural basis of Twinkle’s action and extend our understanding about the molecular mechanism of mtDNA maintenance.

    Abstract I 中文摘要 III 致謝 V List of Tables IX List of figures X Abbreviations XI 1 Introduction 1 1.1 Mitochondrial DNA and its maintenance 1 1.1.1 Mechanism of mtDNA replication 2 1.1.2 The current model of damage-induced mtDNA degradation 4 1.2 Mitochondrial DNA helicase Twinkle 5 1.2.1 Function and enzymatic activity 5 1.2.2 Domain organization 6 1.2.3 Molecular structure 7 1.3 The translocating mechanism of SF4 helicase 8 1.3.1 Structural studies of SF4 helicases 9 1.3.2 Molecular mechanism of disease-causing mutations on Twinkle 10 2 Specific aims 13 2.1 Protein purification of human Twinkle 13 2.2 Biochemical characterization 14 2.3 Structural analysis 14 3 Materials and methods 16 3.1 Materials 16 3.1.1 Plasmids and Constructs 16 3.1.2 Host cell lines 16 3.1.3 Synthetic oligonucleotides 16 3.1.4 Buffers and Solutions 18 3.2 Methods 19 3.2.1 Construction of expression plasmids 19 3.2.2 Polymerase chain reaction 19 3.2.3 Plasmid extraction 21 3.2.4 Protein expression 21 3.2.5 Protein purification 22 3.2.6 Helicase activity assay 23 3.2.7 Electrophoretic mobility shift assay 24 3.2.8 Fluorescence polarization-binding assay 24 3.2.9 In vitro assembly of protein-DNA-AMPPNP complex 25 3.2.10 In-solution chemical crosslinking 26 4 Results 27 4.1 Protein expression and purification of recombinant human Twinkle 27 4.1.1 The design of protein expression construct 27 4.1.2 Protein expression and purification of recombinant human Twinkle 29 4.2 Activity analysis of Twinkle 31 4.3 In vitro assembly of Twinkle-DNA complex 34 4.4 Chemical crosslinking of Twinkle-DNA-AMPPNP complex 36 5 Discussion 38 5.1 Using different metals may catch distinct specie of Twinkle in immobilized metal chelate affinity chromatography 38 5.2 Ionic strength plays a key role in Twinkle protein solubility 39 5.3 Twinkle oligomerizes independent of protein concentration 40 5.4 Twinkle undergoes a conformational change upon binding to NTPs and DNA 40 5.5 Twinkle may bind DNA cooperatively 42 6 Conclusions 43 Tables 45 Table 1. List of mitochondrial diseases caused by defects in mtDNA maintaining factors 45 Table 2. List of construct design 46 Figures 47 References 63 Appendix figures 67

    1. Falkenberg, M., Mitochondrial DNA replication in mammalian cells: overview of the pathway. Essays Biochem, 2018. 62(3): p. 287-296.
    2. Peter, B. and M. Falkenberg, TWINKLE and Other Human Mitochondrial DNA Helicases: Structure, Function and Disease. Genes (Basel), 2020. 11(4).
    3. El-Hattab, A.W. and F. Scaglia, Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options. Neurotherapeutics, 2013. 10(2): p. 186-98.
    4. Falkenberg, M. and C.M. Gustafsson, Mammalian mitochondrial DNA replication and mechanisms of deletion formation. Crit Rev Biochem Mol Biol, 2020. 55(6): p. 509-524.
    5. Zhao, L., Mitochondrial DNA degradation: A quality control measure for mitochondrial genome maintenance and stress response. Enzymes, 2019. 45: p. 311-341.
    6. Richter, M.S.a.C., Fragmented mitochondrial DNA is the predominant carrier of oxidized DNA bases. Biochemistry, 1999. 38.
    7. ABDELLAH MANSOURI, I.G., CAROLINE DE KERGUENEC, SABINE AMSELLEM,, A.B. DELPHINE HAOUZI, ALAIN MOREAU, GE´RARD FELDMANN, PHILIPPE LETTE´RON,, and a.B.F. DOMINIQUE PESSAYRE, An alcoholic binge causes massive degradation of hepatic mitochondrial DNA in mice. GASTROENTEROLOGY, 1999. 117.
    8. Peeva, V., et al., Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nat Commun, 2018. 9(1): p. 1727.
    9. Medeiros, T.C., et al., Autophagy balances mtDNA synthesis and degradation by DNA polymerase POLG during starvation. J Cell Biol, 2018. 217(5): p. 1601-1611.
    10. Nissanka, N., et al., The mitochondrial DNA polymerase gamma degrades linear DNA fragments precluding the formation of deletions. Nat Commun, 2018. 9(1): p. 2491.
    11. Singleton, M.R., M.S. Dillingham, and D.B. Wigley, Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem, 2007. 76: p. 23-50.
    12. Pyle, A.M., Translocation and unwinding mechanisms of RNA and DNA helicases. Annu Rev Biophys, 2008. 37: p. 317-36.
    13. Donmez, I. and S.S. Patel, Mechanisms of a ring shaped helicase. Nucleic Acids Res, 2006. 34(15): p. 4216-24.
    14. Milenkovic, D., et al., TWINKLE is an essential mitochondrial helicase required for synthesis of nascent D-loop strands and complete mtDNA replication. Hum Mol Genet, 2013. 22(10): p. 1983-93.
    15. Farge, G., et al., The N-terminal domain of TWINKLE contributes to single-stranded DNA binding and DNA helicase activities. Nucleic Acids Res, 2008. 36(2): p. 393-403.
    16. Jemt, E., et al., The mitochondrial DNA helicase TWINKLE can assemble on a closed circular template and support initiation of DNA synthesis. Nucleic Acids Res, 2011. 39(21): p. 9238-49.
    17. Sen, D., et al., Human mitochondrial DNA helicase TWINKLE is both an unwinding and annealing helicase. J Biol Chem, 2012. 287(18): p. 14545-56.
    18. Korhonen, J.A., M. Gaspari, and M. Falkenberg, TWINKLE Has 5' -> 3' DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. J Biol Chem, 2003. 278(49): p. 48627-32.
    19. Riccio, A.A., et al., Structural insight and characterization of human Twinkle helicase in mitochondrial disease. Proc Natl Acad Sci U S A, 2022. 119(32): p. e2207459119.
    20. Johannes N. Spelbrink, F.-Y.L., Valeria Tiranti, Kaisu Nikali, Qiu-Ping Yuan, Muhammed Tariq,, et al., Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. nature genetics, 2001. 28.
    21. M R Singleton, M.R.S., T Ellenberger, D B Wigley, Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell, 2000. 101, 589–600.
    22. Lee, S.J., et al., Zinc-binding domain of the bacteriophage T7 DNA primase modulates binding to the DNA template. J Biol Chem, 2012. 287(46): p. 39030-40.
    23. Holmlund, T., et al., Structure-function defects of the twinkle amino-terminal region in progressive external ophthalmoplegia. Biochim Biophys Acta, 2009. 1792(2): p. 132-9.
    24. Fernández-Millán, P., et al., The hexameric structure of the human mitochondrial replicative helicase Twinkle. Nucleic Acids Res, 2015. 43(8): p. 4284-95.
    25. Jumper, J., et al., Highly accurate protein structure prediction with AlphaFold. Nature, 2021. 596(7873): p. 583-589.
    26. Tunyasuvunakool, K., et al., Highly accurate protein structure prediction for the human proteome. Nature, 2021. 596(7873): p. 590-596.
    27. Peter, B., et al., Structural basis for adPEO-causing mutations in the mitochondrial TWINKLE helicase. Hum Mol Genet, 2019. 28(7): p. 1090-1099.
    28. Gao, Y. and W. Yang, Different mechanisms for translocation by monomeric and hexameric helicases. Curr Opin Struct Biol, 2020. 61: p. 25-32.
    29. Itsathitphaisarn, O., et al., The hexameric helicase DnaB adopts a nonplanar conformation during translocation. Cell, 2012. 151(2): p. 267-77.
    30. D L Kaplan, T.A.S., DnaB from Thermus aquaticus unwinds forked duplex DNA with an asymmetric tail length dependence. J Biol Chem, 1999. 274(11): p. 6889-6897.
    31. Gao, Y., et al., Structures and operating principles of the replisome. Science, 2019. 363(6429).
    32. Korhonen, J.A., et al., Structure-function defects of the TWINKLE linker region in progressive external ophthalmoplegia. J Mol Biol, 2008. 377(3): p. 691-705.
    33. Goffart, S., et al., Twinkle mutations associated with autosomal dominant progressive external ophthalmoplegia lead to impaired helicase function and in vivo mtDNA replication stalling. Hum Mol Genet, 2009. 18(2): p. 328-40.
    34. Johannes N. Spelbrink, F.-Y.L., Valeria Tiranti, Kaisu Nikali, Qiu-Ping Yuan, Muhammed Tariq,, et al., Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. nature genetics, 2001. 28.
    35. Sarzi, E., et al., Twinkle helicase (PEO1) gene mutation causes mitochondrial DNA depletion. Ann Neurol, 2007. 62(6): p. 579-87.
    36. Percetti, M., et al., TWNK in Parkinson's Disease: A Movement Disorder and Mitochondrial Disease Center Perspective Study. Mov Disord, 2022.
    37. Longley, M.J., et al., Disease variants of the human mitochondrial DNA helicase encoded by C10orf2 differentially alter protein stability, nucleotide hydrolysis, and helicase activity. J Biol Chem, 2010. 285(39): p. 29690-702.
    38. Kaur, P., et al., Single-molecule level structural dynamics of DNA unwinding by human mitochondrial Twinkle helicase. J Biol Chem, 2020. 295(17): p. 5564-5576.
    39. Rossi, A.M. and C.W. Taylor, Analysis of protein-ligand interactions by fluorescence polarization. Nat Protoc, 2011. 6(3): p. 365-87.
    40. Matson, S.W. and C.C. Richardson, Nucleotide-dependent binding of the gene 4 protein of bacteriophage T7 to single-stranded DNA. Journal of Biological Chemistry, 1985. 260(4): p. 2281-2287.
    41. Kastner, B., et al., GraFix: sample preparation for single-particle electron cryomicroscopy. Nat Methods, 2008. 5(1): p. 53-5.
    42. Stark, H., GraFix: Stabilization of Fragile Macromolecular Complexes for Single Particle Cryo-EM, in Cryo-EM Part A Sample Preparation and Data Collection. 2010. p. 109-126.
    43. Ziebarth, T.D., et al., Dynamic effects of cofactors and DNA on the oligomeric state of human mitochondrial DNA helicase. J Biol Chem, 2010. 285(19): p. 14639-47.
    44. Ziebarth, T.D., C.L. Farr, and L.S. Kaguni, Modular architecture of the hexameric human mitochondrial DNA helicase. J Mol Biol, 2007. 367(5): p. 1382-91.
    45. Dart, M.L., et al., Homogeneous Assay for Target Engagement Utilizing Bioluminescent Thermal Shift. ACS Med Chem Lett, 2018. 9(6): p. 546-551.
    46. O'Shea, V.L. and J.M. Berger, Loading strategies of ring-shaped nucleic acid translocases and helicases. Curr Opin Struct Biol, 2014. 25: p. 16-24.
    47. Online Mendelian Inheritance in Man. Available online: https://omim.org/

    無法下載圖示 校內:2027-09-12公開
    校外:2027-09-12公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE