研究生: |
賴頡宇 Lai, Chieh-Yu |
---|---|
論文名稱: |
金屬有機框架-銀奈米晶體複合材料做為光觸媒與臨場表面拉曼增強光譜平台來研究二氧化碳還原反應機制 MOF-Ag Nanocomposites as Photocatalysts and In-Situ SERS Platforms to Study the Mechanisms of CO2 Reduction Reactions |
指導教授: |
許蘇文
Hsu, Su-Wen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 163 |
中文關鍵詞: | 臨場表面拉曼增強光譜 、電漿子奈米晶體 、金屬有機框架 、光觸媒 、二氧化碳還原反應 |
外文關鍵詞: | in-situ SERS, photocatalysts, CO2 reduction, MOF, plasmonic nanocrystals |
相關次數: | 點閱:37 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米複合材因具有可結合各種材料優勢的能力,使其能夠實現單一材料無法實現的特殊應用。在這本研究中,由電漿子奈米晶體(銀奈米立方體,AgNC)和金屬有機框架(ZIF-8 和 MOF-801)組成的奈米複合材能夠充分利用源自於AgNC 的優秀表面增強拉曼光譜 (SERS)性能和高 CO2 還原活性以及源自於MOFs的優秀CO2捕獲性能,使得這類奈米複合材可以作為臨場SERS平台來檢測CO2還原機制。結果表明,MOF-AgNC奈米複合材的CO2吸附性能強烈依賴於MOF殼層的厚度和MOF的內部環境。而這些奈米複合材作為CO2還原之光觸媒可以產生不同的產物,這與MOF-AgNC 界面的環境有密切的相關。此外,奈米複合材中CO2還原的反應動力學為一級反應,此與MOF的類型和奈米複合材中MOF殼層的厚度無關。以ZIF-8-AgNC複合材作為作為CO2還原之光觸媒,可觀察到隨著奈米複合材中ZIF-8的厚度增加,反應常數對外加光源強度變化的靈敏性保持不變,這表明奈米複合材中 CO2還原的速率決定步驟是在 MOFAgNC 表面的還原反應。然而,對於MOF-801-AgNC 奈米複合材作為作為CO2還原之光觸媒,觀察到反應常數對外加光源強度變化的靈敏性隨著MOF-801在奈米複合材料中的厚度增加而降低,這可以歸因於MOF-801對CO2具有比ZIF-8 更高的表面吸附阻力。這些結果表明,MOF-AgNC奈米複合材作為臨場表面拉曼增強光譜平台觀察 CO2還原是可行的,這使得此晶種介導法合成法可以用於設計出不同的奈米複合材作為臨場拉曼光譜平台來檢測各種適合的化學反應。
Nanocomposites could combine the advantages of various materials, allowing them to be used to achieve special applications that cannot be achieved with a single material. Here, nanocomposites composed of plasmonic nanocrystal (silver nanocube, AgNC) and metal-organic frameworks (ZIF-8 and MOF-801) had the advantages of excellent SERS performance and high CO2 reduction activity of AgNC and excellent CO2 capture performance of MOFs, which made these nanocomposites can be used as in-situ SERS platform to detect CO2 reduction. The results showed that the CO2 adsorption performance of MOF-AgNCnanocomposites strongly depended on the thickness of the MOF shell and the internal environment of the MOF. And these nanocomposites as CO2 reduction photocatalysts can produce different products, which were strongly dependent on the environment of the MOF-AgNC interface. In addition, the kinetics of CO2 reduction in nanocomposites was a first-order reaction and had nothing to do with the type of MOF and the thickness of the MOF shell in the nanocomposites. As the thickness of ZIF-8 in the nanocomposite increases, the sensitivity of reaction constant as a function of irradiation intensity remained constant, indicating that the rate-determined step in CO2 reduction in the nanocomposite was the reaction on the MOF-AgNC surface. However, for the MOF-801-AgNC nanocomposites, the sensitivity of reaction constat to the change in irradiation intensity decreased as the surface area of MOF-801 in the nanocomposites increased, which can be attributed to the fact that MOF-801 had a higher surface adsorption resistance to CO2 than ZIF-8. These results demonstrated that MOF-AgNC nanocomposites are feasible as an in-situ SERS platform for observing CO2 reduction, which make it possible to design different nanocomposites as suitable in-suit Raman spectroscopy platforms to detect various chemical reactions.
1. Jovanov, Z. P., Hansen, H. A., Varela, A. S., Malacrida, P., Peterson, A. A., Norskov, J. K., Stephens, I. E. L., & Chorkendorff, I. (2016). Opportunities and challenges in the electrocatalysis of CO2 and CO2 reduction using bifunctional surfaces: A theoretical and experimental study of Au-Cd alloys. Journal of Catalysis, 343, 215-231.
2. Nitopi, S., Bertheussen, E., Scott, S. B., Liu, X. Y., Engstfeld, A. K., Horch, S., Seger, B., Stephens, I. E. L., Chan, K., Hahn, C., Norskov, J. K., Jaramillo, T. F., & Chorkendorff, I. (2019). Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chemical Reviews, 119(12), 7610-7672.
3. Belessiotis, G.V. and A.G. Kontos, Plasmonic silver (Ag)-based photocatalysts for H2 production and CO2 conversion: Review, analysis and perspectives. Renewable Energy, 2022. 195: p. 497-515.
4. Wang, L. Z., Zhao, J. H., Liu, H. M., & Huang, J. (2018). Design, modification and application of semiconductor photocatalysts. Journal of the Taiwan Institute of Chemical Engineers, 93, 590-602.
5. Yan, J. S., Hu, L. Q., Cui, L. K., Shen, Q. Q., Liu, X. G., Jia, H. S., & Xue, J. B. (2021). Synthesis of disorder-order TaON homojunction for photocatalytic hydrogen generation under visible light. Journal of Materials Science, 56(16), 9791-9806.
6. Petryayeva, E., & Krull, U. J. (2011). Localized surface plasmon resonance: Nanostructures, bioassays and biosensing-A review. Analytica Chimica Acta, 706(1), 8-24.
7. Wang, T., Wang, H. J., Lin, J. S., Yang, J. L., Zhang, F. L., Lin, X. M., Zhang, Y. J., Jin, S. Z., & Li, J. F. (2023). Plasmonic photocatalysis: Mechanism, applications and perspectives. Chinese Journal of Structural Chemistry, 42(9).
8. Yu, S. J., Wilson, A. J., Heo, J., & Jain, P. K. (2018). Plasmonic Control of Multi-Electron Transfer and C-C Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles. Nano Letters, 18(4), 2189-2194.
9. Christopher, P., Xin, H. L., Marimuthu, A., & Linic, S. (2012). Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nature Materials, 11(12), 1044-1050.
10. Shangguan, W. C., Liu, Q., Wang, Y., Sun, N., Liu, Y., Zhao, R., Li, Y. X., Wang, C. Y., & Zhao, J. C. (2022). Molecular-level insight into photocatalytic CO2 reduction with H2O over Au nanoparticles by interband transitions. Nature Communications, 13(1).
11. Chue, K. T., Kim, J. N., Yoo, Y. J., Cho, S. H., & Yang, R. T. (1995). Comparison of Activated Carbon and Zeolite 13x for CO2 Recovery from Flue-Gas by Pressure Swing Adsorption. Industrial & Engineering Chemistry Research, 34(2), 591-598.
12. J.M. Loureiro, M.T. Kartel. (2006) Combined and hybrid adsorbents: fundamentals and applications. Springer Science & Business Media
13. Wright, P. A. (2008). Microporous Framework Solids. Microporous Framework Solids, 1-429.
14. Lu, S. W. (2006). Nanoporous and nanostructured materials for catalysis, sensor, and gas separation applications. Journal of Nanomaterials, 2006.
15. R. Xu, W. Pang, J. Yu, Q. Huo, J. Chen, Chemistry of zeolites and related porous materials: synthesis and structure
16. Díaz, E., Muñoz, E., Vega, A., & Ordóñez, S. (2008). Enhancement of the CO
17. retention capacity of Y zeolites by Na and Cs treatments: Effect of adsorption temperature and water treatment. Industrial & Engineering Chemistry Research, 47(2), 412-418.
18. Millward, A. R., & Yaghi, O. M. (2005). Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. Journal of the American Chemical Society, 127(51), 17998-17999.
19. Bhattacharjee, S., Chen, C., & Ahn, W. S. (2014). Chromium terephthalate metal-organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis. Rsc Advances, 4(94), 52500-52525.
20. Wang, Z., Wang, W. Z., Jiang, D., Zhang, L., & Zheng, Y. L. (2016). Diamine-appended metal-organic frameworks: enhanced formaldehyde-vapor adsorption capacity, superior recyclability and water resistibility. Dalton Transactions, 45(28), 11306-11311.
21. Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R. D., Uribe-Romo, F. J., Chae, H. K., O'Keeffe, M., & Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 103(27), 10186-10191.
22. Moggach, S. A., Bennett, T. D., & Cheetham, A. K. (2009). The Effect of Pressure on ZIF-8: Increasing Pore Size with Pressure and the Formation of a High-Pressure Phase at 1.47 GPa. Angewandte Chemie-International Edition, 48(38), 7087-7089.
23. Gin, D. L., & Noble, R. D. (2011). Designing the Next Generation of Chemical Separation Membranes. Science, 332(6030), 674-676.
24. Zhang, Z. J., Xian, S. K., Xi, H. X., Wang, H. H., & Li, Z. (2011). Improvement of CO2 adsorption on ZIF-8 crystals modified by enhancing basicity of surface. Chemical Engineering Science, 66(20), 4878-4888.
25. Peng, H. J., Zheng, P. Q., Chao, H. Y., Jiang, L., & Qiao, Z. P. (2020). CdSe/ZIF-8-: synthesis and photocatalytic CO2 reduction performance. Rsc Advances, 10(1), 551-555. Sharma, B., et al., SERS: Materials, applications, and the future. Materials Today, 2012. 15(1-2): p. 16-25.
26. Liu, J. J., Jiang, Z. W., & Hsu, S. W. (2023). Investigation of the Performance of Heterogeneous MOF-Silver Nanocube Nanocomposites as CO2 Reduction Photocatalysts by In Situ Raman Spectroscopy. Acs Applied Materials & Interfaces.
27. Jiang, X. H., Yang, M., Meng, Y. J., Jiang, W., & Zhan, J. H. (2013). Cysteamine-Modified Silver Nanoparticle Aggregates for Quantitative SERS Sensing of Pentachlorophenol with a Portable Raman Spectrometer. Acs Applied Materials & Interfaces, 5(15), 6902-6908.
28. Hao, J. M., Han, M. J., Li, J. W., & Meng, X. G. (2012). Surface modification of silver nanofilms for improved perchlorate detection by surface-enhanced Raman scattering. Journal of Colloid and Interface Science, 377, 51-57.
29. Wu, W., Liu, L., Dai, Z. G., Liu, J. H., Yang, S. L., Zhou, L., Xiao, X. H., Jiang, C. Z., & Roy, V. A. L. (2015). Low-Cost, Disposable, Flexible and Highly Reproducible Screen Printed SERS Substrates for the Detection of Various Chemicals (vol 5, 10208, 2015). Scientific Reports, 5.
30. Rosso, K. M., & Bodnar, R. J. (1995). Microthermometric and Raman-Spectroscopic Detection Limits of Co2 in Fluid Inclusions and the Raman-Spectroscopic Characterization of Co2. Geochimica Et Cosmochimica Acta, 59(19), 3961-3975.
31. Pan, Z. W. H., Wang, K., Ye, K. H., Wang, Y., Su, H. Y., Hu, B. H., Xiao, J., Yu, T. W., Wang, Y., & Song, S. Q. (2020). Intermediate Adsorption States Switch to Selectively Catalyze Electrochemical CO2 Reduction. Acs Catalysis, 10(6), 3871-3880.
32. Moran, C. H., Rycenga, M., Zhang, Q., & Xia, Y. N. (2011). Replacement of Poly(vinyl pyrrolidone) by Thiols: A Systematic Study of Ag Nanocube Functionalization by Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 115(44), 21852-21857.
33. Kumari, G., Jayaramulu, K., Maji, T. K., & Narayana, C. (2013). Temperature Induced Structural Transformations and Gas Adsorption in the Zeolitic Imidazolate Framework ZIF-8: A Raman Study. Journal of Physical Chemistry A, 117(43), 11006-11012.
34. Kumari, G., Zhang, X. Q., Devasia, D., Heo, J., & Jain, P. K. (2018). Watching Visible Light-Driven CO2 Reduction on a Plasmonic Nanoparticle Catalyst. Acs Nano, 12(8), 8330-8340.
35. Lu, Q., Rosen, J., Zhou, Y., Hutchings, G. S., Kimmel, Y. C., Chen, J. G. G., & Jiao, F. (2014). A selective and efficient electrocatalyst for carbon dioxide reduction. Nature Communications, 5.
36. Fuchs, A., Mannhardt, P., Hirschle, P., Wang, H. Z., Zaytseva, I., Ji, Z., Yaghi, O., Wuttke, S., & Ploetz, E. (2022). Single Crystals Heterogeneity Impacts the Intrinsic and Extrinsic Properties of Metal-Organic Frameworks. Advanced Materials, 34(3).