簡易檢索 / 詳目顯示

研究生: 葉士榮
Yeh, Shin-Rung
論文名稱: 無閥阻抗式微泵應用於個人電腦冷卻系統之研究
Development and Application of a Valveless Impedance Pump Cooling System in Personal Computers
指導教授: 溫志湧
Wen, Chih-Yung
共同指導教授: 潘大知
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 57
中文關鍵詞: 無閥阻抗泵浦PC水冷
外文關鍵詞: Valveless impedance pump, PC cooling
相關次數: 點閱:96下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中將利用無閥阻抗泵浦原理的特性,設計、製作並且實驗驗證此微小水泵的效能,研究中將建構兩種不同驅動方式的無閥阻抗微泵—圓管式(微型馬達驅動)及薄矩形流道式(電磁驅動),並分析比較不同實驗參數對其它們的影響。
    實驗中以彈性軟管、橡膠薄膜等彈性材質來製作兩個以上不同阻抗的區段,以固定的頻率,在非對稱的位置上進行週期性的壓縮,利用流體的傳遞波與反射波的交互作用,波與波的互相干擾,導致產生壓力梯度,進而形成一個淨流量來驅動流體,並以此作為水冷裝置驅動元件。
    流率實驗的結果顯示,藉由改變壓縮頻率可達到改變流率的目的,且流率大小與壓縮位置有極大的關係,其中以微型馬達致動器的流率最大可達到582ml/min。另外由壓力水頭實驗中發現增加管道元件如冷卻水套等,或增加管道彎取數目會使流道中流體的阻力增加,將使得流率變小。在熱阻分析實驗中可以觀察出兩種不同微泵裝置應用於散熱系統之散熱效益高低情形,無論是微型馬達或電磁鐵致動的無閥阻抗式泵浦均具有PC水冷之散熱能力。

    This study aims to demonstrate the performance of the micro valveless impedance pumps and their applications in PC (Personal Computer) cooling. Two different designs are studied—circular pipe type actuated by a mini-motor and thin rectangular duct type actuated by a pair of electromagnet and permanent magnet. The effects of actuation frequency and actuation position are investigated. Elastic rubber Pipe and membrane are used to create different impedance from that of other parts in flow channels. The mismatch in the acoustic impedance creates wave/wave and wave/flow interaction that produce a net flow rate toward certain directions. And we try to derive this concept into a cooling module design. The results show that the pumping frequency and position will influence the flow rate significantly. The flow rate achieve a maximum value of 582ml/min in the case of circular cylinder pump. The extra components such as the cooling plate and bends are shown to increase the flow resistance, and decrease the flow rate consequently. The thermal analyses demonstrate that the cooling efficiencies of these two designs of different driving mechanisms, motor and Electromagnet, are both suitable for effective cooling in a personal computer.

    中文摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VII 表目錄 IX 附錄 X 符號表 XI 第一章 序論 1 1.1 研究背景 1 1.2 文獻回顧 4 1.3 研究目的 13 第二章 研究方法 14 2.1 實驗架構 14 2.2 驅動元件與系統裝置 18 2.3 實驗控制參數 23 2.4 實驗步驟 26 2.4.1微型馬達驅動的流率量測 26 2.4.2電磁鐵驅動的流率量測 27 第三章 結果與討論 29 3.1壓力水頭損失 29 3.2流率分析 34 3.2.1微型馬達致動流率實驗結果 34 3.2.2電磁鐵致動流率實驗結果 37 3.3溫度分析 39 3.3.1微型馬達致動器溫度量測結果 39 3.3.2電磁鐵致動器溫度量測結果 40 3.4熱阻分析 42 第四章 結論與未來展望 45 4.1 結論 45 4.2未來展望 46 參考文獻 47

    [1] R. C. Mackay, The Practical Pumping Handbook,” McGraw-Hill, New York, 2001
    [2] G. Liebau, “Arterielle Pulsation und venöse Repulsation,” Z. Gesamte Exp. Med. Vol.123, pp.71 ,1954.
    [3] G. Liebau, “Über ein Ventilloses Pumpprinzip,” Naturwiss., Vol. 41, pp.327-, 1954.
    [4] G. Liebau, “Herzpulsation und Blutbewegung,” Z. Gesamte Exp. Med., Vol. 125, pp.482, 1955.
    [5] G. Liebau, “Prinzipien Kombinierter Ventilloser Pumpen, abgeleitet vom Menschlichen Blutkreislauf,“ Naturwiss., Vol. 42, pp.339 , 1955.
    [6] G. Liebau, “Die Strömungsprinzipien des Herzens,” Z. Kreislaufforsch., Vol. 44, pp. 677, 1955.
    [7] H. Thomman, “A Simple Pumping Mechanism in a Valveless Tube,” Journal of Applied Mathematics and Physis (ZAMP), Vol. 29, pp. 169, 1978.
    [8] M. Moser, J. W. Huang, G. S. Schwarz, T. Kenner, A. Noordergraaf, “Impedance Defined Flow Generalisation of William Harvey’s Concept of The Circulation— 370 Years Later,” International Journal of Cardiovascular Medicine and Science, Vol.1, No. 3/4, pp. 205, 1998.
    [9] E. Jung, “2-D Simulations of Valveless Pumping Using The
    Immersed Boundary Mothod,”New York University, 1999.
    [10] T. Kenner, M. Moser, I. Tanev, K. Ono, “The Liebau-Effect or on the Optimal Use of Energy for The Circulation of Blood,”Scripta Medica(BRNO), Vol. 73(1), pp. 9, 2000.
    [11] E. Jung, C. Peskin, “2-D Simulations of Valveless Pumping Using Immersed Boundary Methods,” SIAM J. Sci. Comput. Vol. 23 (1), pp. 19, 2001.
    [12] C. Babbs, & E. Jung, “Valveless Pumping Explained in Terms of Reflected Pressure Waves”, 2002.
    [13] D. Rinderknecht, A. I. Hickerson, M. Gharib, “A Valveless Micro Impedance Pump Driven by Electromagnetic Actuation,” Journal of Micromechanics and Microengineering, Vol. 15, pp. 861, 2005.
    [14] C. Y. Wen, C. H. Cheng, C. N. Jian, T. A. Nguyen, C. Y. Hsu, Y. R. Su, “A Valveless Micro Impedance Pump Driven by PZT Actuation,” Material Science Forum, Vol. 505. pp. 127, 2005.
    [15] A. I. Hickerson, “An Experimental Analysis of the Characteristic Behaciors of An Impedance Pump,” California Institute of Technology,Pasadena, 2005.
    [16] H. K. Ma, B. R. Hou, C. Y. Lin, J. J. Gao, “The Improved Performance of One-Side Actuating Diaphragm Micropump for a Liquid Cooling System Development and Application of a Diaphragm Micro-pump with Piezoelectric Device,” International Communications in Heat and Mass Transfer Vol. 35, pp. 957, 2008
    [17] H. K. Ma, B. R. Hou, H. Y. Wu, C. Y. Lin, J. J. Gao, M. C. Kou, “Development and application of a diaphragm micro-pump with piezoelectric device,” Microsyst Technol ,Vol. 14, pp. 1001, 2008.
    [18] H. K. Ma, B. R. Chen, J. J. Gao, C. Y. Lin, “Development of an OAPCP-Micropump Liquid Cooling System in a Laptop,” International Communications in Heat and Mass Transfer, Vol. 36, pp. 225, 2009.
    [19] 許智崵, “對稱型無閥阻抗泵浦之實驗研究” ,大葉大學機械工程學系碩士論文,民國九十五年。
    [20] D.H. Doan , “二維無閥式阻抗幫浦的流體力學研究” ,大葉大學機械與自動化工程學系碩士論文,民國九十六年。
    [21] T. A. Nguyen, “無閥式組抗幫浦的流體力學研究” ,大葉大學車輛工程研究所, 2005

    下載圖示 校內:2015-08-30公開
    校外:立即公開
    QR CODE