簡易檢索 / 詳目顯示

研究生: 蔡宏岳
Tsai, Hung-Yue
論文名稱: 以聚乙烯醇結合纖維素奈米晶體製備具導電性並可3D列印之高強度紡織物
Ultra-tough and 3D printable poly(vinyl alcohol)/cellulose nanocrystals reinforced conductive nanocomposite deep eutectic solvent gels for textile
指導教授: 游聲盛
Yu, Sheng-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 83
中文關鍵詞: 3D列印聚乙烯醇纖維素奈米晶體深共熔溶劑紡織品
外文關鍵詞: 3D printing, poly(vinyl alcohol), cellulose nanocrystals, deep eutectic solvent, textile
相關次數: 點閱:120下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於三維列印能夠加速製造的速度並有效地減少製程步驟,近年來已在紡織品產業呈現了的巨大潛力。紡織品的樣式、圖樣更能夠透過三維列印達到高度且快速的客製化,這在傳統的紡織產業通常需要額外的步驟與設備方能達成。此外亦可在紡織物中摻雜具導電性的材料來製成智能織物,並且提供額外功能。然而目前三維列印技術應用於紡織物的研究,仍受到列印材料的限制,尤其材料需要同時具備可列印性、穿戴舒適度以及耐久性。因此,找到一個能夠符合上述條件的材料,及一個能夠以三維列印製備紡織物的方法,是本論文研究的方向。
    在本研究中,我們結合了聚乙烯醇水溶液和纖維素奈米晶體來製備可三維列印的水凝膠墨水。列印後之結構再以數個冷凍/解凍循環來引發聚乙烯醇的結晶,之後再以深共熔溶劑將水置換,最終形成以深共熔溶劑為主的離子凝膠。其中深共熔溶劑與聚乙烯醇形成了穩定且強韌的的氫鍵網絡,更富含大量的離子以提供離子導電性。額外加入的導電高分子(poly(2,3-dihydrothieno-1,4-dioxin): poly(styrene sulfonate) (PEDOT:PSS))也有效的增加了凝膠的導電性。另外,纖維素奈米晶體可有效地扮演流體流變行為的修飾劑以及膠體機械強度的增強劑。我們選擇了含有12 wt% 聚乙烯醇和4 wt% 纖維素奈米晶體來進行三維列印。三維列印的結果顯示了該墨水能夠順利列印成紡織物並具有高形狀保真度。我們的深共熔溶劑離子凝膠的抗斷裂強度可達到相當傑出的10.1 MPa,保證了此類紡織物的強度。我們接著以三維列印製備電容式感測器以偵測外加的壓力。結果顯示,此電容式感測器可做為穿戴式的智能織物,感應不同的壓力且具有高穩定性,並能夠以三維列印應對使用者的客製化需求。
    總結來說,本研究結合聚乙烯醇和纖維素奈米晶體展示了一種創新的製備方法製備深共熔溶劑離子凝膠。並且運用三維列印製備紡織品且能夠組合成電容式感測器。這項研究提供了一個新穎的策略來三維列印紡織物結構的奈米複合材料。

    3D printing of textiles has shown great potential due to the acceleration of fabrication and the reduction of procedure steps in the textile industry. Also, the usage of 3D printing technology enables the highly customizable designs of textiles, which are difficult in conventional textile industries. Furthermore, the incorporation of conductive materials may lead to smart textiles with additional functionalities. However, the 3D printing of textiles remains challenging because of the lack of suitable materials with printability, comfortableness during wearing, and durability. Thus, it is necessary to find new materials as well as new strategies to fabricate 3D printed textiles with high mechanical strength, conductivity, and durability.
    In this study, we first prepared a 3D printable hydrogel based on poly(vinyl alcohol) (PVA) and cellulose nanocrystals (CNCs). The hydrogels then underwent several freeze-thaw cycles to induce the crystallization of PVA. The water inside the hydrogels was further replaced by the deep eutectic solvents (DESs) composed of choline chloride (ChCl) and glycerol. The solvent exchange successfully formed a stable and strong network in our ionogels compared to the original hydrogel. The DESs served as a non-volatile medium with high ionic conductivity. The introduction of poly(2,3-dihydrothieno-1,4-dioxin): poly(styrene sulfonate) (PEDOT:PSS) further increases the conductivity of our DES ionogel. The addition of CNCs provides shear-thinning behavior and sufficient yield stress for direct ink writing (DIW). The ink could be extruded and printed into a customized textile structure with high shape fidelity. The DES ionogels exhibited excellent mechanical properties with maximum stress up to 10.1 MPa compared to conventional hydrogels. We then assembled our 3D printed textile into a capacitive sensor that could sense external pressure applied by the change of capacitance. Our sensor has shown the ability to respond to various stresses. The sensor possesses high stability due to the low volatility of DES, and the 3D printed textiles could be customized to meet the user’s demand and provide comfortable wearing. These results demonstrate an innovative strategy to achieve ultra-tough, conductive, and 3D printable textile-based tactile sensors from environmentally friendly feedstock by the DIW process.

    ABSTRACT I 摘要 III TABLE OF CONTENT V LIST OF FIGURES VIII LIST OF TABLES XIV CHAPTER 1. INTRODUCTION 1 1.1 Deep eutectic solvents (DESs) 1 1.1.1 Introduction of DESs 1 1.1.2 Types of DESs 3 1.1.3 Properties of DESs 4 1.1.4 DESs-based ionogels 7 1.2 Three-dimensional (3D) printing 8 1.2.1 Introduction of 3D printing 8 1.2.2 Stereolithography (SLA) 10 1.2.3 Digital light processing (DLP) 11 1.2.4 Fused deposition modeling (FDM) 12 1.2.5 Direct ink writing (DIW) 13 1.3 Cellulose nanocrystals (CNCs) 15 1.3.1 Introduction and synthesis of CNCs 15 1.3.2 Properties of CNCs 17 1.4 Poly (vinyl alcohol) (PVA) 18 1.4.1 Introduction of PVA 18 1.4.2 PVA hydrogels 19 1.5 Smart Textiles 21 1.5.1 Introduction of smart textiles 21 1.5.2 Fabrication of smart textiles 22 1.5.3 The textile-based capacitive tactile sensor 24 1.5.4 3D printing of smart textiles 25 1.6 Objective 27 CHAPTER 2. EXPERIMENTAL METHOD 29 2.1 Materials 29 2.2 Preparation of the PVA/CNCs DES ionogels 29 2.3 DES content measurement 30 2.4 Rheological test 31 2.5 Mechanical test 31 2.6 Electrical test 32 2.7 3D printing 32 2.8 Characterization 33 CHAPTER 3. RESULT & DISCUSSION 35 3.1 Rheological test 35 3.2 Mechanical test 40 3.3 DES content measurement 53 3.4 X-ray diffraction (XRD) analysis 54 3.5 Differential scanning calorimetry (DSC) analysis 56 3.6 Electrochemical impedance spectroscopy (EIS) analysis 59 CHAPTER 4. 3D PRINTING & APPLICATION 63 4.1 3D printing of smart textile 63 4.2 Capacitive sensor 67 CHAPTER 5. CONCLUSION 70 CHAPTER 6. REFERENCE 71

    1. Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F., Deep eutectic solvents: Syntheses, properties and applications. Chemical Society Reviews 2012, 41 (21), 7108.
    2. Smith, E. L.; Abbott, A. P.; Ryder, K. S., Deep eutectic solvents (DESs) and their applications. Chemical Reviews 2014, 114 (21), 11060.
    3. Abbott, A. P.; Capper, G.; Davies, D. L.; Munro, H. L.; Rasheed, R. K.; Tambyrajah, V., Preparation of novel, moisture-stable, lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chemical Communications 2001, (19), 2010.
    4. Gurkan, B.; Squire, H.; Pentzer, E., Metal-free deep eutectic solvents: Preparation, physical properties, and significance. The Journal of Physical Chemistry Letters 2019, 10 (24), 7956.
    5. Soares, B.; Tavares, D. J. P.; Amaral, J. L.; Silvestre, A. J. D.; Freire, C. S. R.; Coutinho, J. A. P., Enhanced solubility of lignin monomeric model compounds and technical lignins in aqueous solutions of deep eutectic solvents. ACS Sustainable Chemistry & Engineering 2017, 5 (5), 4056.
    6. Płotka-Wasylka, J.; De la Guardia, M.; Andruch, V.; Vilková, M., Deep eutectic solvents vs ionic liquids: Similarities and differences. Microchemical Journal 2020, 159, 105539.
    7. Hayyan, M.; Hashim, M. A.; Hayyan, A.; Al-Saadi, M. A.; Alnashef, I. M.; Mirghani, M. E. S.; Saheed, O. K., Are deep eutectic solvents benign or toxic? Chemosphere 2013, 90 (7), 2193.
    8. Hayyan, M.; Mbous, Y. P.; Looi, C. Y.; Wong, W. F.; Hayyan, A.; Salleh, Z.; Mohd-Ali, O., Natural deep eutectic solvents: Cytotoxic profile. SpringerPlus 2016, 5 (1), 913.
    9. Halder, A. K.; Cordeiro, M. N. D. S., Probing the environmental toxicity of deep eutectic solvents and their components: An in silico modeling approach. ACS Sustainable Chemistry & Engineering 2019, 7 (12), 10649.
    10. Hoffman, A. S., Hydrogels for biomedical applications. Advanced drug delivery reviews 2012, 64, 18.
    11. Lee, K. Y.; Mooney, D. J., Hydrogels for tissue engineering. Chemical Reviews 2001, 101 (7), 1869.
    12. Brahim, S.; Narinesingh, D.; Guiseppi-Elie, A., Polypyrrole-hydrogel composites for the construction of clinically important biosensors. Biosensors and Bioelectronics 2002, 17 (1-2), 53.
    13. Wang, J.; Zhang, S.; Ma, Z.; Yan, L., Deep eutectic solvents eutectogels: Progress and challenges. Green Chemical Engineering 2021, 2 (4), 359.
    14. Qin, H.; Panzer, M. J., Chemically cross‐linked poly(2‐hydroxyethyl methacrylate)‐supported deep eutectic solvent gel electrolytes for eco‐friendly supercapacitors. ChemElectroChem 2017, 4 (10), 2556.
    15. Lai, C.-W.; Yu, S.-S., 3D printable strain sensors from deep eutectic solvents and cellulose nanocrystals. ACS Applied Materials & Interfaces 2020, 12 (30), 34235.
    16. Isik, M.; Ruiperez, F.; Sardon, H.; Gonzalez, A.; Zulfiqar, S.; Mecerreyes, D., Innovative poly (ionic liquid) s by the polymerization of deep eutectic monomers. Macromolecular Rapid Communications 2016, 37 (14), 1135.
    17. Marullo, S.; Meli, A.; Giannici, F.; D’Anna, F., Supramolecular eutecto gels: Fully natural soft materials. ACS Sustainable Chemistry & Engineering 2018, 6 (10), 12598.
    18. Zhang, W.; Feng, C.; Yang, G.; Li, G.; Ding, X.; Wang, S.; Dou, Y.; Zhang, Z.; Chang, J.; Wu, C.; Jiang, X., 3D-printed scaffolds with synergistic effect of hollow-pipe structure and bioactive ions for vascularized bone regeneration. Biomaterials 2017, 135, 85.
    19. Belhabib, S.; Guessasma, S., Compression performance of hollow structures: From topology optimisation to design 3D printing. International Journal of Mechanical Sciences 2017, 133, 728.
    20. Thomas, C.; Christopher, W.; Olga, I.; Banning, G., Could 3D printing change the world?: Technologies, potential, and implications of additive manufacturing. Atlantic Council 2011.
    21. Ngo, T. D.; Kashani, A.; Imbalzano, G.; Nguyen, K. T.; Hui, D., Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering 2018, 143, 172.
    22. Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D., 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering 2017, 110, 442.
    23. Kim, G. B.; Lee, S.; Kim, H.; Yang, D. H.; Kim, Y.-H.; Kyung, Y. S.; Kim, C.-S.; Choi, S. H.; Kim, B. J.; Ha, H.; Kwon, S. U.; Kim, N., Three-dimensional printing: Basic principles and applications in medicine and radiology. Korean Journal of Radiology 2016, 17 (2), 182.
    24. Ligon, S. C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R., Polymers for 3D printing and customized additive manufacturing. Chemical Reviews 2017, 117 (15), 10212.
    25. Sood, A. K.; Ohdar, R. K.; Mahapatra, S. S., Parametric appraisal of mechanical property of fused deposition modelling processed parts. Materials & Design 2010, 31 (1), 287.
    26. Saadi, M. A. S. R.; Maguire, A.; Pottackal, N. T.; Thakur, M. S. H.; Ikram, M. M.; Hart, A. J.; Ajayan, P. M.; Rahman, M. M., Direct ink writing: A 3D printing technology for diverse materials. Advanced Materials 2022, 2108855.
    27. Truby, R. L.; Lewis, J. A., Printing soft matter in three dimensions. Nature 2016, 540 (7633), 371.
    28. Peng, E.; Zhang, D.; Ding, J., Ceramic robocasting: Recent achievements, potential, and future developments. Advanced Materials 2018, 30 (47), 1802404.
    29. Wang, Y.; Zhang, Y.; Wang, G.; Shi, X.; Qiao, Y.; Liu, J.; Liu, H.; Ganesh, A.; Li, L., Direct graphene‐carbon nanotube composite ink writing all‐solid‐state flexible microsupercapacitors with high areal energy density. Advanced Functional Materials 2020, 30 (16), 1907284.
    30. De Souza Lima, M. M.; Borsali, R., Rodlike cellulose microcrystals: Structure, properties, and applications. Macromolecular Rapid Communications 2004, 25 (7), 771.
    31. Du, H.; Liu, W.; Zhang, M.; Si, C.; Zhang, X.; Li, B., Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydrate Polymers 2019, 209, 130.
    32. Zhu, H.; Luo, W.; Ciesielski, P. N.; Fang, Z.; Zhu, J.; Henriksson, G.; Himmel, M. E.; Hu, L., Wood-derived materials for green electronics, biological devices, and energy applications. Chemical Reviews 2016, 116 (16), 9305.
    33. Lagerwall, J. P. F.; Schütz, C.; Salajkova, M.; Noh, J.; Hyun Park, J.; Scalia, G.; Bergström, L., Cellulose nanocrystal-based materials: From liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Materials 2014, 6 (1), e80.
    34. Kargarzadeh, H.; Mariano, M.; Gopakumar, D.; Ahmad, I.; Thomas, S.; Dufresne, A.; Huang, J.; Lin, N., Advances in cellulose nanomaterials. Cellulose 2018, 25 (4), 2151.
    35. Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J., Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews 2011, 40 (7), 3941.
    36. Ehmann, H. M. A.; Mohan, T.; Koshanskaya, M.; Scheicher, S.; Breitwieser, D.; Ribitsch, V.; Stana-Kleinschek, K.; Spirk, S., Design of anticoagulant surfaces based on cellulose nanocrystals. Chemical Communications 2014, 50 (86), 13070.
    37. Bai, W.; Holbery, J.; Li, K., A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 2009, 16 (3), 455.
    38. Frka-Petesic, B.; Guidetti, G.; Kamita, G.; Vignolini, S., Controlling the photonic properties of cholesteric cellulose nanocrystal films with magnets. Advanced Materials 2017, 29 (32), 1701469.
    39. Li, M.-C.; Wu, Q.; Song, K.; Qing, Y.; Wu, Y., Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids. ACS Applied Materials & Interfaces 2015, 7 (8), 5006.
    40. Siqueira, G.; Kokkinis, D.; Libanori, R.; Hausmann, M. K.; Gladman, A. S.; Neels, A.; Tingaut, P.; Zimmermann, T.; Lewis, J. A.; Studart, A. R., Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Advanced Functional Materials 2017, 27 (12), 1604619.
    41. Hassan, C. M.; Peppas, N. A., Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Springer Berlin Heidelberg: pp 37.
    42. Tubbs, R. K., Sequence distribution of partially hydrolyzed poly(vinyl acetate). Journal of Polymer Science Part A-1: Polymer Chemistry 1966, 4 (3), 623.
    43. Hdidar, M.; Chouikhi, S.; Fattoum, A.; Arous, M., Effect of hydrolysis degree and mass molecular weight on the structure and properties of PVA films. Ionics 2017, 23 (11), 3125.
    44. Wang, L.; Periyasami, G.; Aldalbahi, A.; Fogliano, V., The antimicrobial activity of silver nanoparticles biocomposite films depends on the silver ions release behaviour. Food Chemistry 2021, 359.
    45. Wang, Y.; Wang, J.; Ma, Z.; Yan, L., A highly conductive, self-recoverable, and strong eutectogel of a deep eutectic solvent with polymer crystalline domain regulation. ACS Applied Materials & Interfaces 2021, 13 (45), 54409.
    46. Gong, Z.; Zhang, G.; Zeng, X.; Li, J.; Li, G.; Huang, W.; Sun, R.; Wong, C., High-strength, tough, fatigue resistant, and self-healing hydrogel based on dual physically cross-linked network. ACS Applied Materials & Interfaces 2016, 8 (36), 24030.
    47. Ricciardi, R.; Auriemma, F.; De Rosa, C.; Lauprêtre, F., X-ray diffraction analysis of poly(vinyl alcohol) hydrogels, obtained by freezing and thawing techniques. Macromolecules 2004, 37 (5), 1921.
    48. Tamura, K.; Ike, O.; Hitomi, S.; Isobe, J.; Shimizu, Y.; Nambu, M., A new hydrogel and its medical application. ASAIO Journal 1986, 32 (1), 605.
    49. Peppas, N. A.; Mongia, N. K., Ultrapure poly (vinyl alcohol) hydrogels with mucoadhesive drug delivery characteristics. European journal of pharmaceutics and biopharmaceutics 1997, 43 (1), 51.
    50. Peppas, N.; Valkanas, G., Die makromol. Chem. Macromol. Chem. Phys 1975, 176, 3433.
    51. Adelnia, H.; Ensandoost, R.; Moonshi, S. S.; Gavgani, J. N.; Vasafi, E. I.; Ta, H. T., Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. European Polymer Journal 2022, 164.
    52. Kim, T. H.; An, D. B.; Oh, S. H.; Kang, M. K.; Song, H. H.; Lee, J. H., Creating stiffness gradient polyvinyl alcohol hydrogel using a simple gradual freezing-thawing method to investigate stem cell differentiation behaviors. Biomaterials 2015, 40, 51.
    53. Pu, X.; Hu, W.; Wang, Z. L., Toward wearable self-charging power systems: The integration of energy-harvesting and storage devices. Small 2018, 14 (1), 1702817.
    54. Li, K.; Zhang, Q.; Wang, H.; Li, Y., Red, green, blue (RGB) electrochromic fibers for the new smart color change fabrics. ACS Applied Materials & Interfaces 2014, 6 (15), 13043.
    55. Coosemans, J.; Hermans, B.; Puers, R., Integrating wireless ECG monitoring in textiles. Sensors and Actuators A: Physical 2006, 130-131, 48.
    56. Liu, M.; Pu, X.; Jiang, C.; Liu, T.; Huang, X.; Chen, L.; Du, C.; Sun, J.; Hu, W.; Wang, Z. L., Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Advanced Materials 2017, 29 (41), 1703700.
    57. Cooper, C. B.; Arutselvan, K.; Liu, Y.; Armstrong, D.; Lin, Y.; Khan, M. R.; Genzer, J.; Dickey, M. D., Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers. Advanced Functional Materials 2017, 27 (20), 1605630.
    58. Stoppa, M.; Chiolerio, A., Wearable electronics and smart textiles: A critical review. Sensors 2014, 14 (7), 11957.
    59. Qu, H.; Skorobogatiy, M., Conductive polymer yarns for electronic textiles. Electronic Textiles 2015, 21.
    60. Mirmohseni, A.; Salari, D.; Nabavi, R., Preparation of conducting polyaniline/nylon 6 blend fibre by wet spinning technique. Iranian Polmer Journal 2006, 15, 259.
    61. Liu, Y.; Li, X.; Lü, J. C., Electrically conductive poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid/polyacrylonitrile composite fibers prepared by wet spinning. Journal of Applied Polymer Science 2013, 130 (1), 370.
    62. Loewenstein, T.; Hastall, A.; Mingebach, M.; Zimmermann, Y.; Neudeck, A.; Schlettwein, D., Textile electrodes as substrates for the electrodeposition of porous ZnO. Physical Chemistry Chemical Physics 2008, 10 (14), 1844.
    63. Lee, H. M.; Choi, S. Y.; Jung, A.; Ko, S. H., Highly conductive aluminum textile and paper for flexible and wearable electronics. Angewandte Chemie-International Edition 2013, 52 (30), 7718.
    64. Zhu, C.; Guan, X.; Wang, X.; Li, Y.; Chalmers, E.; Liu, X., Mussel‐inspired flexible, durable, and conductive fibers manufacturing for finger‐monitoring sensors. Advanced Materials Interfaces 2019, 6 (1), 1801547.
    65. Guo, X.; Huang, Y.; Cai, X.; Liu, C.; Liu, P., Capacitive wearable tactile sensor based on smart textile substrate with carbon black/silicone rubber composite dielectric. Measurement Science and Technology 2016, 27 (4), 045105.
    66. Chatterjee, K.; Ghosh, T. K., 3d printing of textiles: Potential roadmap to printing with fibers. Advanced Materials 2020, 32 (4), 1902086.
    67. Uysal, R.; Stubbs, J. B., A new method of printing multi-material textiles by fused deposition modelling (FDM). Tekstilec 2019, 62 (4).
    68. Gao, T.; Yang, Z.; Chen, C.; Li, Y.; Fu, K.; Dai, J.; Hitz, E. M.; Xie, H.; Liu, B.; Song, J.; Yang, B.; Hu, L., Three-dimensional printed thermal regulation textiles. ACS Nano 2017, 11 (11), 11513.
    69. Wang, Y.; Liu, Y.; Plamthottam, R.; Tebyetekerwa, M.; Xu, J.; Zhu, J.; Zhang, C.; Liu, T., Highly stretchable and reconfigurable ionogels with unprecedented thermoplasticity and ultrafast self-healability enabled by gradient-responsive networks. Macromolecules 2021, 54 (8), 3832.
    70. Lai, P.-C.; Yu, S.-S., Cationic cellulose nanocrystals-based nanocomposite hydrogels: Achieving 3d printable capacitive sensors with high transparency and mechanical strength. Polymers 2021, 13 (5), 688.
    71. Oguzlu, H.; Dobyrden, I.; Liu, X.; Bhaduri, S.; Claesson, P. M.; Boluk, Y., Polymer induced gelation of aqueous suspensions of cellulose nanocrystals. Langmuir 2021, 37 (10), 3015.
    72. Chen, Y.; Xu, C.; Huang, J.; Wu, D.; Lv, Q., Rheological properties of nanocrystalline cellulose suspensions. Carbohydrate Polymers 2017, 157, 303.
    73. Yuk, H.; Lu, B.; Lin, S.; Qu, K.; Xu, J.; Luo, J.; Zhao, X., 3D printing of conducting polymers. Nature Communications 2020, 11 (1).
    74. Shi, S.; Peng, X.; Liu, T.; Chen, Y.-N.; He, C.; Wang, H., Facile preparation of hydrogen-bonded supramolecular polyvinyl alcohol-glycerol gels with excellent thermoplasticity and mechanical properties. Polymer 2017, 111, 168.
    75. Wada, M.; Heux, L.; Sugiyama, J., Polymorphism of cellulose I family:  Reinvestigation of cellulose IVI. Biomacromolecules 2004, 5 (4), 1385.
    76. Abitbol, T.; Johnstone, T.; Quinn, T. M.; Gray, D. G., Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Matter 2011, 7 (6), 2373.
    77. Kataoka, T.; Ishioka, Y.; Mizuhata, M.; Minami, H.; Maruyama, T., Highly conductive ionic-liquid gels prepared with orthogonal double networks of a low-molecular-weight gelator and cross-linked polymer. ACS Applied Materials & Interfaces 2015, 7 (41), 23346.
    78. Kayser, L. V.; Lipomi, D. J., Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Advanced Materials 2019, 31 (10), 1806133.
    79. Döbbelin, M.; Marcilla, R.; Salsamendi, M.; Pozo-Gonzalo, C.; Carrasco, P. M.; Pomposo, J. A.; Mecerreyes, D., Influence of ionic liquids on the electrical conductivity and morphology of PEDOT:PSS films. Chemistry of Materials 2007, 19 (9), 2147.
    80. Shi, H.; Liu, C.; Jiang, Q.; Xu, J., Effective approaches to improve the electrical conductivity of PEDOT: PSS: A review. Advanced Electronic Materials 2015, 1 (4), 1500017.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE