簡易檢索 / 詳目顯示

研究生: 曾敬倫
Zeng, Jing-Lun
論文名稱: 在硝酸環境下以濕法冶金分離釤、鈷、銅、鐵之研究
Hydrometallurgical separate of samarium, cobalt, copper and iron in nitric acid solution
指導教授: 申永輝
Shen, Yong-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 94
中文關鍵詞: 釤鈷磁鐵離子交換田口方法溶煤萃取鹼沉澱資源化
外文關鍵詞: samarium-cobalt magnet, ion exchange, Taguchi method, alkali precipitation, extraction
相關次數: 點閱:86下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技進步,電子、電器產品和電動車等科技產品的普及,永久磁鐵的運用越來越廣泛。而在永久磁鐵中,以釹鐵磁鐵和釤鈷磁鐵最具代表性,釹鐵磁鐵於1980年代發明,常用於馬達、硬碟和珠寶扣。釤鈷磁鐵則是發明於1970~1980年代,是最早發現的稀土磁鐵,因可適用在高溫和較大的磁場狀態中,常用於航天航空、渦輪機、國防軍工、微波器件、醫療設備等相關用品。
    本研究目的為利用濕法冶金將釤鈷磁鐵切硝泥中的,釤、鈷、銅、鐵元素進行分離後,將可再利用的元素讓其回歸產線,並使用田口方法優化濕法冶金的製程。
    依照實驗階段不同為兩個部分,第一部分浸漬的部分,利用田口方法優化硝酸浸漬釤鈷磁鐵切硝泥目的為提高浸漬效率,第二部分為元素分離,利用溶煤萃取、離子交換和選擇性沉澱等方式分離釤鈷磁鐵切硝泥中的釤、鈷、銅、鐵四種元素。
    由田口方法中的L16表進行控制因子的選取和實驗,並得出最佳浸漬參數為在溫度30 °C 、固液比10 g/L、浸漬時間60分鐘、酸濃度2N,在該條件下浸漬率可以達到釤:98.7%、鈷:98.3%、銅:99.2%、鐵98.6%。
    第二部分依照分離元素的不同,順序分別為銅離子分離、鐵離子分離、釤鈷離子分離。
    銅離子分離步驟,根據Diniz等人研究[1]中可以知道在pH值小於1下,M4195的選擇比Cu(Ⅱ)>>Co(Π)>Fe(Ⅲ)>Sm(Ⅲ),故使用M4195離子交換樹脂可以在不影響到其他離子濃度的狀況下分離銅離子,由實驗中可以觀察到pH值越高,可以增加同體積下的銅離子吸附量,可以得到在pH值為0.9,進料流速每小時2B.V.可以有效收集65B.V.之除銅溶液,可以吸附99.83%的銅離子。從實驗中觀察到脫附劑氨水度越高,越能有效富集銅離子,本研究以4M氨水進行脫附,可以脫附96.11%的銅離子。
    鐵離子分離步驟,利用沉澱法將交換尾液中含有的釤、鈷、鐵離子中的鐵離子進行鹼沉澱[2],使其轉變為氫氧化鐵,由實驗中可以發現在pH值3.5時,可以將99.6%的鐵離子沉澱。
    釤鈷離子分離步驟,利用溶煤萃取法將上一步驟剩餘之釤、鈷溶液進行分離,使用使用二-2-乙基己基磷酸 (D2EHPA)進行萃取,由實驗可知在pH值3.5; D2EHPA濃度0.5(mol/L);O/A比1時,能夠將釤離子99.9%分離至有機相,並根據佐貫須美子(1994)等人[3]利用草酸在作為反萃劑可以將釤離子反應為Sm2(C2O4)3沉澱分離出有機相,實驗後得到在草酸莫爾比為2時進行反萃取,可以有效地使釤離子沉澱而液相的鈷溶液利用沉澱法將鈷(II)溶液中使用草酸當作沉澱劑,可使鈷 (II)轉變為CoC2O4沉澱,而實驗後得到條件在pH值為3;溫度60 °C;莫爾比1.5的條件下可以將99.9%的鈷離子沉澱為CoC2O4。

    This research aims to separate samarium, cobalt, copper, and iron in nitric acid solution and to recover higher-valued metals samarium and cobalt from magnet waste. Nitric acid was optimized with the Taguchi Method to improve the leaching ratio of samarium-cobalt magnet. The second part is the element separation of the four elements, namely samarium, cobalt, copper, and iron found in the magnet waste. First, M4195 resin was utilized to perform the ion exchange to obtain pure copper ions. Subsequently, the exchange tail fluid containing samarium, cobalt, and iron ions was subjected to alkali precipitation to convert iron ions to ferric hydroxide (Fe(OH)3). In the following extraction process, samarium ions were then separated into di-2-ethylhexylphosphoric acid (D2EHPA). Samarium were then precipitated in the form of Sm2(C2O4)3 using a stripping agent, oxalic acid. Interestingly, the same stripping agent could be used to precipitate cobalt (II) in the solution into CoC2O4 precipitates.

    摘要 i Extended Abstract iii 致謝 ix 目錄 x 表目錄 xiii 圖目錄 xv 第一章 前言 1 1-1 前言 1 1-2 研究動機與目的 2 第二章 文獻回顧 4 2-1 釤鈷磁鐵介紹 4 2-1-1 釤之物理與化學特性 6 2-1-2 鈷之物理與化學特性 7 2-1-3 銅之物理與化學特性 8 2-1-4 鐵之物理與化學特性 9 2-2 濕法治金與資源化技術 10 2-2-1 田口方法 10 2-2-2 選擇性化學沉澱法 13 2-2-3 離子交換法概述 17 2-2-4 萃取與反萃取概述 24 2-2-5 文獻探討 25 第三章 研究方法與步驟 27 3-1 實驗流程 27 3-2 實驗器材及實驗藥品 29 3-2-1 實驗器材 29 3-2-2 實驗藥品 30 3-2-3 離子交換樹脂 31 3-3 實驗方法 34 3-3-1 田口方法優化浸漬 34 3-3-2 利用離子交換法 37 3-3-3 選擇性化學沉澱法 38 3-3-4 溶煤萃取 38 第四章 結果與討論 43 4-1 物性化性 43 4-2 酸溶浸漬 44 4-2-1 田口分析 48 4-2-2 最佳化參數比較 65 4-3 分離銅離子 72 4-3-1 離子交換吸附之結果 72 4-3-2 M4195脫附銅之結果 77 4-4 選擇性沉澱分離鐵 82 4-5 溶煤萃取分離釤、鈷 83 4-5-1 萃取參數實驗-萃取劑濃度 83 4-5-2 萃取參數實驗-油水比(O/A ratio) 84 4-5-3 反萃驗參數 85 4-5-4 鈷離子沉澱 86 第五章 結論與建議 90 5-1 結論 90 5-2 建議 91 參考文獻 92

    1. Diniz, C.V., F.M. Doyle, and V.S.T. Ciminelli, EFFECT OF pH ON THE ADSORPTION OF SELECTED HEAVY METAL IONS FROM CONCENTRATED CHLORIDE SOLUTIONS BY THE CHELATING RESIN DOWEX M-4195. Separation Science and Technology, 2002. 37(14): p. 3169-3185.
    2. Monhemius, A. and M. AJ, Precipitation diagrams for metal hydroxides, sulphides, arsenates and phosphates. 1977.
    3. 佐貫須美子, et al., Sm (III) を担持した酸性抽出剤からのしゅう酸による晶析逆抽出. 日本金属学会誌, 1994. 58(11): p. 1271-1278.
    4. Binnemans, K., et al., Recycling of rare earths: a critical review. Journal of Cleaner Production, 2013. 51: p. 1-22.
    5. Mineral commodity summaries 2022. National Minerals Information Center, ed. J. Gambogi. 2022: U.S. Geological Survey.
    6. McCaig, M., Permanent magnets in theory and practice. 1977: Pentech press.
    7. Association, M.M.P., Standard specifications for permanent magnet materials. Alnico Magnets, 2000(0100): p. 7.
    8. Standnrd Atomic Weights 2013. Commission on Isotopic Abundances and Atomic Weights.
    9. Lock, J.M., The Magnetic Susceptibilities of Lanthanum, Cerium, Praseodymium, Neodymium and Samarium, from 1.5 K to 300 K. Proceedings of the Physical Society. Section B, 1957. 70(6): p. 566-576.
    10. Okazaki, T., et al., Electronic and geometric structures of metallofullerene peapods. Physica B: Condensed Matter, 2002. 323(1): p. 97-99.
    11. Huray, P.G., S.E. Nave, and R.G. Haire, Magnetism of the heavy 5f elements. Journal of the Less Common Metals, 1983. 93(2): p. 293-300.
    12. Barbalace, K.L. Periodic Table of Elements. Element Samarium - Sm 1995 - 2022.
    13. Lalande, G., et al., Physical, chemical and electrochemical characterization of heat-treated tetracarboxylic cobalt phthalocyanine adsorbed on carbon black as electrocatalyst for oxygen reduction in polymer electrolyte fuel cells. Electrochimica Acta, 1995. 40(16): p. 2635-2646.
    14. Trigg, G., Encyclopedia of Applied Physics, Vol. 4. International Journal of Materials Research, 1993. 84(9): p. 604-604.
    15. 《化學 必修1》. Vol. 3. 2007, 人民教育出版社. 61.
    16. 蘇朝墩, 訪問世界品質大師田口玄一博士. 品質月刊, 2004. 4: p. 30-32.
    17. 李輝煌, 田口方法:品質的設計與實務. 2020.
    18. ARCHIVE, I. SOLUBILITY PRODUCT CONSTANTS. 2012.
    19. Zhou, K., et al., Sulfuric acid leaching of Sm Co alloy waste and separation of samarium from cobalt. Hydrometallurgy, 2017. 174: p. 66-70.
    20. 朱屯, 萃取與離子交換, ed. 冶金工業出版社. 2005.
    21. Ni'am, A.C., et al., Recovery of rare earth elements from waste permanent magnet (WPMs) via selective leaching using the Taguchi method. Journal of the Taiwan Institute of Chemical Engineers, 2019. 97: p. 137-145.
    22. Mendes, F. and A. Martins, Selective sorption of nickel and cobalt from sulphate solutions using chelating resins. International Journal of Mineral Processing, 2004. 74(1-4): p. 359-371.
    23. 佐貫, 須., et al., Sm-Co磁石スクラップからの有価金属の湿式回収. 日本金属学会誌, 1995. 59(2): p. 169-176.
    24. Torkaman, R., et al., A kinetic study on solvent extraction of samarium from nitrate solution with D2EHPA and Cyanex 301 by the single drop technique. Hydrometallurgy, 2014. 150: p. 123-129.
    25. Netpradit, S., P. Thiravetyan, and S. Towprayoon, Application of ‘waste’ metal hydroxide sludge for adsorption of azo reactive dyes. Water Research, 2003. 37(4): p. 763-772.
    26. Dupont. AMBERSEP M4195 and AMBERSEP M4195 UPS Chelating Resins Product Data Sheet. 2018.
    27. Hathaway, B. and A. Tomlinson, Copper (II) ammonia complexes. Coordination Chemistry Reviews, 1970. 5(1): p. 1-43.
    28. Zhang, L., et al., Recovery of Co, Ni, and Li from solutions by solvent extraction with β-diketone system. Hydrometallurgy, 2021. 204.
    29. Shibata, J., et al., Development of adavanced separation technology of rare metals using extraction and crystallization stripping. Materials transactions, 2012: p. M2012234.
    30. Ling, B., Studies on characteristics of complexation of Cd and Zn with humic acids. Journal of Nuclear Agricultural Sciences, 2000. 14(01): p. 44.
    31. Aklaghi, M., F. Rashchi, and E. Vahidi. Stripping of Fe (III) from D2EHPA using different reagents. in Proceedings of the XXV International Mineral Processing Congress. 2010. Australasian Institute for Mining and Metallurgy Brisbane.
    32. Meng, Q., Y. Zhang, and P. Dong, A combined process for cobalt recovering and cathode material regeneration from spent LiCoO2 batteries: Process optimization and kinetics aspects. Waste Management, 2018. 71: p. 372-380.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE