簡易檢索 / 詳目顯示

研究生: 楊榮澤
Yang, Rung-Je
論文名稱: 奈米α-Al2O3晶粒之成長熱力學
Growth Thermodynamics of Nano-scaled α-Al2O3 Crystallites
指導教授: 顏富士
Yen, Fu-Su
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 164
中文關鍵詞: 聚合奈米氧化鋁熱力學晶粒成長
外文關鍵詞: Crystal growth, Nano-scaled, Thermodynamics, Alumina, Colascence
相關次數: 點閱:76下載:29
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討由θ-Al2O3相轉換而得之奈米α-Al2O3晶粒的成長熱力學。利用θ-到α-Al2O3相轉換得到α-Al2O3為獲得α-粒體最常用的方法之一。文獻指出θ-到α-Al2O3相轉換係藉孕核成長機制進行。但在成核之後,對α-核晶成長則有不同的看法:以往稱α-核晶的成長是藉相界面推移來進行,然最近研究指出晶粒成長係藉彼此間的聚合來進行。不過,不管是哪一種看法,其論點皆止於初步觀察階段,對於奈米α-晶粒的成長機制、成長過程中顯微構造的發育、晶粒的熱力學特性、及更基礎的晶粒 (包括孕核與成長) 生成熱力學數據的報導則缺。本研究即肇因於此,主要針對 1)初生態α-晶粒的成長行為 (第四章) 及2) 成長過程可能出現之準穩定態α-晶粒的熱力學特性進行觀察 (第五章)。最後再藉1)、2) 之現象配合計算分析建立奈米α-晶粒的成長熱力學模型 (第六章)。
    實驗藉熱處理觀察由兩種不同晶徑之θ-Al2O3相轉換而得之α-晶粒的成長行為及過程中的顯微構造變化。在奈米α-晶粒的熱力學特性方面則藉熱處理及機械力處理觀察複合粉末內奈米α-晶粒的相穩定性。再利用現有之熱力學數據,配合實驗結果建立一奈米α-晶粒的成長熱力學模型。
    在α-晶粒的成長行為方面 (第四章):研究結果顯示初生態α-晶粒的成長過程/機制受前相 (母相) 晶粒,即θ-Al2O3,尺寸之影響。當θ-晶粒大於相轉換臨界晶徑 (dcθ, ~ 25 nm) 時,α-核晶在母相 (θ-Al2O3) 內生成後,會以相界面推移的方式成長,新生α-粒體的大小可能受母相尺寸控制。當θ-晶粒小於dcθ時,α-Al2O3則會改以聚合的方式成長,其過程呈三階段跳躍式變化:粒子從核晶之17-20 nm (dcα) 成長至45-50 nm (dp),接著再繼續成長至最小穩定晶徑 (ds2),~ 75-100 nm。一旦α-晶粒成長超過ds2,指狀成長可能旋即發生。
    在奈米α-晶粒的熱力學特性方面 (第五章):晶徑< 100 nm之單離α-晶粒在熱力學上屬準穩定態。這類α-晶粒在施以適當熱處理及機械力處理後會有相退變回θ-相的現象。其退回之最低溫度約800oC。當處理溫度大於800oC時,相退變反應所需時間僅數十秒。由於θ-與α-Al2O3密度不同,在相退變發生時,由體積膨脹造成的應力,會使θ-晶粒出現雙晶結構,雙晶面為 (001)。此種具雙晶結構的θ-晶粒再經熱處理又可相變成具雙晶或是鑲嵌構造的α-Al2O3。
    在α-晶粒之成長熱力學模型建立方面 (第六章):研究以實驗結果 (數據) 搭配熱力學計算成功提出一描述α-晶粒成長的熱力學模型,並藉此模型計算得知利用相界面推移與聚合機制成長之α-Al2O3的最小穩定晶徑分別為 ~ 30 (ds1) 與 ~ 75 nm (ds2)。此外,本研究亦藉計算獲得尚未報導之θ-Al2O3晶粒的表面自由能為2.16 J/m2。成長過程中α-晶粒的熱力學狀態會影響晶粒的成長行為:小於或等於最小穩定晶徑 (ds) 的粒子 (∆Gr ≥ 0) 會傾向以單離的方式存在。當成長超過ds後 (∆Gr < 0),α-晶粒可能會以兩個或兩個以上的單元連接而形成指狀結構。此種指狀晶粒出現的現象與奈米晶粒之初期燒結現象相似。
    研究最後以一θ-Al2O3-boehmite為原料,藉其可發生均質反應的特性,成功說明α-Al2O3的晶粒成長過程符合上述之成長模式。本文也相信此舉對奈米α-Al2O3粉末之生產及往後粉末之應用必有關鍵性的幫助。

    Growth thermodynamics of nano-scaled α-Al2O3 crystallites transformed from θ-Al2O3 was investigated in this study. θ- to α-Al2O3 phase transformation is one of the most popular used methods for preparation of α-Al2O3 crystallites. It is considered that θ- to α-Al2O3 phase transformation can be achieved by a nucleation and growth process. Once the nucleation of α-Al2O3 occurs, the α-crystallite growth is proposed to be progressed by either interface boundary migration or coalescence processes. However, the understanding of both growth processes for α-crystallites was in the initial stage and the perspective was still ambiguous. There have been no researches focused on the growth mechanisms, the microstructure evolution as well as the thermodynamic characteristics of nano-scaled α-Al2O3 crystallites so far. Furthermore, reports related to the basic thermodynamic data for the formation of α-crystallites was also absent. Therefore, the following objectives were examined in this study: (1) growth behaviors of α-nucleus (Chapter 4), (2) thermodynamic characteristics of nano-scaled α-Al2O3 crystallites formed during the coalescence processes (Chapter 5), and (3) growth thermodynamic models of nano-scaled α-Al2O3 crystallites based on experimental results and theoretical calculations (Chapter 6).
    In chapter 4, thermal treatments were employed to investigate the growth behavior as well as the microstructure evolutions of α-nucleus. In chapter 5, powders containing a substantial amount of nano-sized α-crystallites were used as starting materials. Thermal and mechanical treatments were employed to investigate the thermodynamic characteristics of α-Al2O3 crystallites. Moreover, the thermodynamic data referred by the previous studies as well as the experimental results obtained in this study were employed to develop the growth thermodynamic models of nano-scaled α-Al2O3 crystallites in chapter 6.
    In chapter 4, it was found that the growth process of α-nuclei was affected by the crystallite size of θ-Al2O3 particles. As the θ-Al2O3 size was larger than the critical size (dcθ, ~ 25 nm) needed for the formation of α-Al2O3 nucleus, the growth of α-crystallites could be performed by interface boundary migration once the α-nucleus formed in the parent phase (θ-Al2O3 crystallites). The size of new-formed α-Al2O3 may be controlled by that of θ-crystallites. As the θ-Al2O3 size was smaller than dcθ, α-crystallite growth could be progressed by coalescence mechanism instead of boundary migration. The coalescent crystallite growth was characterized with quantized size growth. The α-Al2O3 nuclei with sizes 17-20 nm (dcα) coalesced to form α-crystallites of sizes 45-50 nm (dp), then by coalescence of which the stable α-crystallites (ds) with minimum sizes 75-100 nm were obtained. Coalescence of the crystallites of sizes 75-100 nm leads to forming the crystallites with vermicular growth.
    In chapter 5, the results demonstrated that discrete α-crystallites of sizes < 100 nm may behave metastable thermodynamically. The nano-sized α-crystallites could take phase-retrogression backward to θ-phase using appropriate thermal and mechanical treatments. The lowest temperature triggered the backward phase transformation was 800oC. And if the crystallites were thermally treated at temperature above 800oC, the α-crystallites experienced phase-retrogression within tens of second. Because of the density difference between θ- and α-phase Al2O3, the strain energies provoked by the volume expansion and shrinkage during the phase transition eventually results in forming the twinned and twinned/or mosaic structure for the θ- and α-Al2O3 crystallites, respectively. The twin plane of twinned θ-Al2O3 is (001).
    In chapter 6, thermodynamic models of α-Al2O3 growth were proposed and it demonstrated that the calculations results coincided well with the data observed. It was concluded that the minimum sizes of stable α-crystallites obtained through boundary migration and coalescence processes were ~ 30 nm (ds1) and ~ 75 nm (ds2), respectively. The surface free energy of θ-Al2O3 which has been the first time reported can be 2.16 J/m2. During the growth process, the outline of the particles can be closely related to the thermodynamic state of α-crystallites. α-crystallites with size smaller (∆Gr ≥ 0) and larger (∆Gr < 0) than the stable crystallites (ds) may grow to form discrete and vermiculated particles, respectively. The vermiculated particles were caused by the coalescence of two or more α-crystallites of sizes ds. This study indicated that the phenomena of occurrence of vermiculated particles were similar to that of initial sintering of nanocrystallites.
    Finally, θ-Al2O3-boehmite agglomerates were used as staring materials and thermal treatments were employed to demonstrate that the growth process of α-crystallites was well-coincided with the growth model mentioned above. It is believed that the understanding of the growth thermodynamics could be very helpful for the fabrication and application of nano-scaled α-Al2O3 powders in the near future.

    摘 要 I Abstract III 目 錄 VI 表 目 錄 X 圖 目 錄 XII 第一章 緒論 1 1-1 研究背景 1 1-1-1 奈米時代來臨 1 1-1-2奈米級α-Al2O3的製備與研究 1 1-1-3 固--固系統中晶粒之孕核成長 5 1-1-4 相轉換過程中α-Al2O3核晶的成長 6 1-2 研究動機 7 1-3 研究目的 8 第二章 理論基礎與前人研究 9 2-1相轉換與相轉換熱力學 9 2-1-1 相轉換 9 2-1-2 孕核成長相轉換熱力學 12 2-1-3 表面能與相穩定臨界晶徑 15 2-1-4 相轉換應力造成的影響 16 2-2 晶粒成長模式 17 2-2-1熟化成長機制 (Ostwald ripening mechanism) 19 2-2-2旋轉接合機制 (Oriented attachment mechanism) 22 2-2-3晶界推移機制 (Interface boundary migration mechanism 28 2-3 氧化鋁 31 2-3-1鋁水合物及過渡相氧化鋁 31 2-3-2 θ-Al2O3 31 2-3-3 α-Al2O3 35 2-4 由θ-Al2O3得到的α-Al2O3 39 2-4-1 θ-到α-Al2O3相轉換理論基礎 39 2-4-2 θ-到α-Al2O3相轉換過程與熱力學間的關係 43 2-5 相轉換伴隨的雙晶 43 第三章 實驗方法及步驟 45 3-1 實驗流程及樣品製作 45 3-1-1 α-Al2O3核晶的發育 (成長) 觀察 45 3-1-2 奈米α-Al2O3晶粒的相退變觀察 49 3-1-3 θ-Al2O3-boehmite粉末製作 54 3-2 特性分析 56 3-2-1 粉末結晶相分析 56 3-2-2 Al2O3粉體之平均晶徑分析 56 3-2-3 α-Al2O3生成量定量分析 57 3-2-4 應力的計算 59 3-2-5 粉末比表面積 59 3-2-6 熱差分析 60 3-2-7 粒徑分佈量測 60 3-2-8 顯微結構及結構分析 60 第四章 α-Al2O3晶粒的成長 61 4-1 母相θ-Al2O3晶粒> 25 nm 的α-Al2O3晶粒成長 62 4-2 母相θ-Al2O3晶粒< 25 nm 的α-Al2O3聚合成長 66 4-3 HRTEM顯微結構分析 69 4-4 結論 80 第五章 奈米α-Al2O3晶粒的熱力學特性 81 5-1 α-Al2O3的相退變 (實驗) 觀察 81 5-1-1 奈米α-Al2O3的觀察 81 5-1-2 微結構的發育特徵觀察 86 5-2 陶瓷體中殘留奈米α-Al2O3晶粒的相退變觀察 92 5-3 結論 97 第六章 成長熱力學分析 98 6-1 晶粒成長與熱力學的關係 99 6-2 相界面推移成長熱力學 99 6-3 聚合成長熱力學 103 6-3-1 三種晶徑 103 6-3-2 準穩定態α-Al2O3 104 6-3-3 α-Al2O3的穩定晶徑 104 6-4 指狀 (蠕蟲狀) 成長的發生 109 6-5 結論 112 第七章 綜合討論 113 7-1 α-Al2O3晶粒成長行為驗證 113 7-1-1 三階段α-Al2O3晶徑顯示 113 7-1-2 α-Al2O3晶粒相退變 115 7-2 奈米α-Al2O3晶粒的分類 118 7-3 指狀 (蠕蟲狀) 晶粒與晶粒燒結間的關係 121 第八章 總結論 123 參考文獻 126 附 錄 140 Appendix І 指狀成長發生原因的推論 153 Appendix-ІІ 以奈米氧化鋁晶粒為原料製備奈米晶粒陶瓷體的可能性 157 自 述 160

    Arlt G., “Twinning in ferroelectric and ferroelastic ceramics: stress relief,” J. Mater. Sci., 25 2655-2666 (1990).
    Ayyub P., Multani M., Barma M., Palkar V. R., and Vijayaraghavan R., “Size-induced structural phase transitions and hyperfine properties of microcrystalline Fe2O3,” J. Phys. C: Solid State Phys., 21 2229-2245 (1988).
    Badkar P. A. and Bailey J. E., “The mechanism of simultaneous sintering and phase transformation in alumina,” J. Mater. Sci., 11 1794-1806 (1976).
    Bagwell R. B., Messing G. L., and Howell P. R., “The formation of α-Al2O3 from θ-Al2O3 : The relevance of a “critical size” and : diffusional nucleation or “synchro-shear”?,” J. Mater. Sci., 36 1833-1841 (2001).
    Banfield J. F. and Navrotsky A., Reviews in mineralogy & geochemistry, Vol. 44: Nanoparticles and the environment, Mineralogical Society of America and Geochemical Society, Washington, DC, 2001.
    Blonski S. and Garofalini S. H., “Molecular dynamics simulations of α-alumina and -alumina surfaces,” Surf. Sci., 295 [1-2] 263-274 (1993).
    Bonevich J. E. and Marks L. D., “The sintering behavior of ultrafine alumina particles,” J. Mater. Res., 7 [6] 1489-1500 (1992).
    Buerger M. J., “The genesis of twin crystals,” Am. Mineral., 30, 469-482 cited in Bloss F. D., Crystallography and Crystal Chemistry: An Introduction, Holt, Rinehart and Winston, Inc., New York (1971).
    Carturan G., Maggio R. D., Montagna M., Pilla O., and Scardi P., “Kinetics of phase separation and thermal behavior of gel-derived Al2O3 doped by Cr2O3: an X-ray diffraction and fluorescence spectroscopy study,” J. Mater. Sci., 25 2705-2710 (1990).
    Chang P. L., Yen F. S., Cheng K. C., and Wen H. L., “Examinations on the critical and primary crystallite sizes during θ-to α-phase transformation of ultrafine alumina powders,” Nano Letters, 1 [5] 253-261 (2001).
    Chase M. W., Davies Jr. C. A., Doweny J. R., Fruip Jr., McDonalds R. R., and Syverud A. N., JANAF Thermochemical Tables, 3rd ed. Am. Chem. Soc., Washington, DC., 1986.
    Cheng Y., Wang Y., Chen D., and Bao F., “Evolution of single crystalline dentrites from nanoparticles through oriented attachment,” J. Phys. Chem. B, 109 794-798 (2005).
    Chiang Y. M., Birnie ⅢD., and Kingery W. D., Physical Materials- Principles for Ceramic Science and Engineering, Wiely, New York, 1997.
    Chou T. C., Adamson D., Mardinly J., and Nieh T. G., “Microstructural evolution and properties of nanocrystallilne alumina made by reactive sputtering deposition,” Thin Solid Films, 205 [2] 131-139 (1991).
    Chou T. C. and Nieh T. G., “Nucleation and concurrent anomalous grain growth of α-Al2O3 during γ→α pahse transformation,” J. Am. Ceram. Soc., 74 [9] 2270-2279 (1991).
    Chou T. C. and Nieh T. G., “Interface-controlled phase transformation and abnormal grain growth of α-Al2O3 in thin γ-alumina films,” Thin Solid Films, 221 [2] 89-97 (1992).
    Cullity B. D., Elements of X-ray Diffraction, Addison-Wesley Publishing Company, Inc. 2nd Ed., London, 1978.
    Ding J., Tsuzuki T., and McCormick P. G., “Ultrafine alumina particles prepared by mechanochemical/thermal processing,” J. Am. Ceram. Soc., 79 [11] 2956-58 (1996).
    Dynys F. W. and Halloran J. W., “Alpha alumina formation in alum-derived gamma alumina,” J. Am. Ceram. Soc., 65 [9] 442-448 (1982).
    Dynys F. W. and Halloran J. W., “Alpha alumina formation in Al2O3 gels,” pp. 142-151 in Ultrastructure Processing of Ceramics, Glasses and Composites, Edited by L. L. Hench and D. R. Ulrich. John Wiley and Sons, New York, 1984.
    Evans A. G. and Heuer A. H., “Review-Transformation toughening in ceramics: martensitic transformation in crack-tip stress fields,” J. Am. Ceram. Soc., 63 [5-6] 241-248 (1980).
    Frey M. H. and Payne D. A., “Grain-size effect on structure and phase transformation for barium titanate,” Phys. Rev. B, 54 [5] 3158-3168 (1996).
    Gamarnik M. Y., “Size-related stabilization of diamond nanoparticles,” Nanostructured Mater., 7 [6] 651-658 (1996).
    Garive R. C., “The occurrence of metastable tetragonal zirconia as a crystallite size effect,” J. Phys. Chem., 69 [4] 1238-1243 (1965).
    Garive R. C., “Stabilization of the tetragonal structure in zirconia microcrystals,” J. Phys. Chem., 82 [2] 218-224 (1978).
    Garvie R. C. and Goss M. F., “Intrinsic size dependence of the phase transformation temperature on zirconia microcrystals,” J. Mater. Sci., 21 1253-1257 (1985).
    Gary M., McAfee Jr. R., and Wolf C. L. Glossary of Geology; American Geological Institute, Washington, DC, pp. 604-05, 1987.
    Givargizov E. I., Oriented crystallization on amorphous substrate, Plenum Press, New York, 1991.
    Greenwood G. W., “The growth of dispersed precipitates in solutions,” Acta Metallurgica, 4 243-248 (1956).
    Greville C., Encyclopaedia Britannica “Corundum,” 7; 11th ed., p.207, 1951.
    Gribb A. A. and Banfield J. F., “Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2,” Am. Miner., 82 717-728 (1997).
    Heuer A. H., Claussen N., Kriven W. M., and Rűhle, “Stability of tetragonal ZrO2 particles in ceramic matrices,” J. Am. Ceram. Soc., 65 [12] 642-650 (1982).
    Hirayama T., “High-temperature characteristics of transition Al2O3 powder with ultrafine spherical particles,” J. Am. Ceram. Soc., 70 [6] c-122-c-124 (1987).
    Huang F., Zhang H., and Banfield J. F., “Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS,” Nano Letters, 3 [3] 373-378 (2003).
    Jia B. and Gao L., “Growth of well-defined cubic hematite single crystals: oriented aggregation and ostwald ripening,” Crys. Growth & Design, 8 [4] 1372-1376 (2008).
    Jiansirisomboon S. and MacKenzie K. J. D., “Sol-gel processing and phase characterization of Al2O3 and Al2O3/SiC nanocomposite powders,” Mater. Res. Bull., 41 791-803 (2006).
    Joesten R. L., “Kinetics of coarsening and diffusion-controlled mineral growth,” Rev. Mineral. Geochem. Vol. 26, Mineralogical Society of America and Geochemical Society, Washington, DC, pp. 507-582, 1991.
    Johnston G. P., Muenchausen R., and Smith D. M., “Reactive laser ablation synthesis of nanosize alumina powder,” J. Am. Ceram. Soc., 75 [12] 3293-3298 (1992).
    Kamiya K., Yotani J., Senba R., Matsuoka J., and Nasu H., “Sol-gel preparation of alumina gels forming α-alumina around 500 oC,” J. Ceram. Soc. Jpn., 104 664-666 (1996).
    Kao H. C. and Wei W. C., “Kinetics and microstructural evolution of heterogeneous transformation of θ-alumina to α-alumina,” J. Am. Ceram. Soc., 83 [2] 362-68 (2000).
    Kingery W. D., Bowen H. K., and. Uhlmann D. R, Introduction to Ceramics, John Wiley&Sons, 2nd Ed., New York, 1976.
    Klein C. and Hurlbut Jr. C. S., Manual of Mineralogy, John Wiley&Sons, Inc., 21st Ed, New York, 1993.
    Klug H. P. and Alexander L. E., X-ray diffraction procedures for polycrystalline and amorphous materials, John Wiley&Sons, Inc., 2nd Ed, New York, 1974.
    Kohn J. A., Katz G., and Broder J. D., “β-Ga2O3 and its alumina isomorph, θ-Al2O3,” Am. Miner., 42 398-408 (1957).
    Kumagai M. and Messing G. L., “Controlled transformation and sintering of a boehmite sol-gels by α-alumina seeding,” J. Am. Ceram. Soc., 68 [9] 500-505 (1985).
    Kuo L. Y. and Shen P., “On the condensation and preferred orientation of TiC nanocrystals –effects of electric field, substrate temperature and second phase,” Mater. Sci. Eng. A, 276 99-107 (2000).
    Kuo L. Y. and Shen P., “Shape dependent coalescence and preferred orientation of CeO2 nanocrystallites,” Mater. Sci. Eng. A, 277 258-265 (2000).
    Laine R. M., Marchal J. C., Sun H. P., and Pan X. Q., “Nano--Al2O3 by liquid-feed flame spray pyrolysis,” Nature Mater., 5 710-712 (2006).
    Lee W. H. and Shen P., “On the coalescence and twinning of cubo-octahedral CeO2 condensates,” J. Crys. Growth, 205 169-176 (1999).
    Levin I. and Brandon D., “Metastable alumina polymorphs: Crystal structures and transition sequences,” J. Am. Ceram. Soc., 81 [8] 1995-2012 (1998).
    Li J., Pan Y., Xiang C., Ge Q., and Guo J., “Low temperature synthesis of ultrafine -Al2O3 powder by a simple aqueous sol-gel process,” Ceram. Int., 32 587-591 (2006).
    Liao S. C., Chen Y. J., Kear B. H., and Mayo W. E., “High pressure/low temperature sintering of nanocrystalline alumina,” Nanostructured Mater., 10 [6] 1063-1079 (1998).
    Lifshitz I. M. and Slyozov V. V., “The kinetics of precipitation from supersaturated solid solutions,” J. Phys. Chem. Solids, 19 35-50 (1961).
    Mackrodt W. C., Davey R. J., and Black S. N., “The morphology of α-Al2O3 and α-Fe2O3: The importance of surface relaxation,” J. Crys. Growth, 80 441-446 (1987).
    Manassidis I and Gillan M. J., “Structure and energetics of alumina surfaces calculated from first principles,” J. Am. Ceram. Soc., 77 [2] 335-338 (1994).
    McArdle J. L. and Messing G.. L., “Seeding with γ-alumina for transformation and microstructure control in boehmite-derived -alumina,” J. Am. Ceram. Soc., 69 [5] c-98-c-101 (1986).
    McArdle J. L. and Messing G. L., “Transformation, microstructure development, and densification in α-Fe2O3-seeded boehmite-derived alumina,” J. Am. Ceram. Soc., 76 [1] 214-222 (1993).
    McHale J. M., Auroux A., Perrotta A. J., and Navrotsky A., “Surface energies and thermodynamic phase stability in nanocrystalline aluminas,” Science, 277 788-791 (1997a).
    McHale J. M., Navrotsky A., and Perrotta A. J., “Effects of increased surface area and chemisorbed H2O on the relative stability of nanocrystalline -Al2O3 and α-Al2O3,” J. Phys. Chem. B, 101 603-613 (1997b).
    Messing G. L. and Kumagai M., “Low-Temperature sintering of α-alumina seeded boehmite gels,” Am. Ceram. Soc. Bull., 73 88-91 (1994).
    Mitsuhashi T., Ichihara M., and Tatsuke U., “Characterization and stabilization of metastable tetragonal ZrO2,” J. Am. Ceram. Soc., 57 [2] 97- 101 (1974).
    Morrissey K. J., Czanderna K. K., Carter C. B., and Merrill R. P., “Growth of α-Al2O3 within a transition alumina matrix,” Comm. Am. Ceram. Soc., C88-C90 (1984).
    Mullin J. W., Crystallization; 4th Ed., Butterworth-Heinemann, London, 2001.
    Multani M. S. and Ayyub P., “Size and pressure driven phase transitions,” Condensed Matter News, 1 [1] 25-27 (1991).
    Mutsuddy B. C. and Ford R. G., Ceramic injection molding, Materials Technology Series, 1st Ed., Chapman & Hall, New York, 1995.
    Myerson A. S., Handbook of Industrial Crystallization, Butterworth- Heinemann, Boston, 1993.
    Navrotsky A., “Energetics of nanoparticle oxides: interplay between surface energy and polymorphism,” Geochem. Trans., 4 [6] 34- 37 (2003).
    Nesse W. D., Introduction to Mineralogy, Oxford University Press, Inc., New York, 2000.
    Niederberger M. and Cölfen H., “Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly,” Phys. Chem. Chem. Phys., 8 3271-3287 (2006).
    Nieh T. G., McNally C. M., and Wadsworth J., “Superplasticity in intermetallic alloys and ceramics” JOM, 41 31-35 (1989).
    Nuth J. A. Ш, “Small-particle physics and interstellar diamonds,” Nature 329 [15] 589 (1987).
    Nuth J. A. Ш, “Are small diamonds thermodynamically stable in the interstellar medium?,” Astrophys. Space Sci., 139 103-109 (1987).
    Pach L., Roy R., and Komarneni S., “Nucleation of alpha alumina in boehmite gel,” J. Mater. Res., 5 [2] 278-285 (1990).
    Pacholksi C., Kornowski A., and Weller H., “Self-assembly of ZnO: From nanodots to nanorods,” Angew. Chem. Int. Ed., 41 [7] 1188-1191 (2002).
    Panchula M. L. and Ying J. Y., “Mechanical synthesis of nanocrystalline α-Al2O3 seeds for enhanced transformation kinetics,” Nanostructured Mater., 9 161-164 (1997).
    Peason T. G., The Chemical Background of the Aluminum Industry, Monograph of the Royal Institute of Chemistry, London, 1995.
    Penn R. L., “Kinetics of oriented aggregation,” J. Phys. Chem. B, 108 12707-12712 (2004).
    Penn R. L. and Banfield J. F., “Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insights from nanocrystalline TiO2,” Am. Mineral., 83 1077-1082 (1998a).
    Penn R. L. and Banfield J. F., “Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals,” Science, 281 [14] 969-971 (1998b).
    Penn R. L., Oskam G., Strathmann T. J., Searson P. C., Stone A. T., and Veblen D. R., “Epitaxial assembly in aged colloids,” J. Phys. Chem. B, 105 2177-2182 (2001).
    Penn R. L., Stone A. T., and Veblen D. R., “Defects and disorder: Probing the surface chemistry of heterogenite (CoOOH) by dissolution using hydroquinone and iminodiacetic acid,” J. Phys. Chem. B, 105 4690-4697 (2001).
    Porter D. A. and Easterling K. E., Phase transformation in Metals and Alloys, Chapman&Hall, 2nd Ed., London, 1992.
    Putnis A., Introduction to Mineral Sciences, Cambridge University Press, 1992.
    Putnis A.and McConnell J. D. C., Principles of Mineral Behavior, Elsevier, New York, 1980.
    Rahaman M. N., Ceramic Processing and Sintering, M. Dekker, New York, 1995.
    Rajendran S., “Production of ultrafine alpha alumina powders and fabrication of fine grained strong ceramics,” J. Mater. Sci., 29 5664-5672 (1994).
    Ribeiro C., Lee E. J. H., Longo E., and Leite E. R., “A kinetic model to describe nanocrystal growth by the oriented attachment mechanism,” ChemPhysChem., 6 690-696 (2005).
    Ribeiro C., Lee E. J. H., Longo E., and Leite E. R., “Oriented attachment mechanism in anisotropic nanocrystals: A “polymerization” approach,” ChemPhysChem., 7 664-670 (2006).
    Saegusa K., Rhine W. E., and Bowen H. K., “Effect of composition and size of crystallite on crystal phase in lead barium titanate,” J. Am. Ceram. Soc., 76 [6] 1505-1512 (1993).
    Sharma P. K., Jilavi M. H., Burgard D., Nass R., and Schmidt H., “Hydrothermal synthesis of nanosized α-Al2O3 from seeded aluminum hydroxide,” J. Am. Ceram. Soc., 81 [10] 2732-34 (1998).
    Shaw D. J., Introduction to colloid and surface chemistry, 4th Ed., Butterworth- Heinemann, Oxford, 1996.
    Shelleman R. A., Messing G. L., and Kumagai K., “Alpha alumina transformation in seeded boehmite gels,” J. Non-crystal. Solids, 82 277-285 (1986).
    Shelleman R. A. and Messing G. L., “Liquid-phase-assisted transformation of seeded -alumina,” J. Am. Ceram. Soc., 71 [5] 317 (1988).
    Shen P. and Lee W. H., “(111)-specific coalescence twinning and martensitic transformation of tetragonal ZrO2 condensates,” Nano Letters, 1 [12] 707-711 (2001).
    Simha N. K.., “Twin and habit plane microstructures due to the tetragonal to monoclinic transformation of zirconia,” J. Mech. Phys. Solids, 45 [2] 261-292 (1997).
    Stokes R. J. and Evans D. F., Fundamentals of interfacial engineering, Chapter 3, Wiley-VCH Publishers, New York, 1997.
    Sun J., Stirner T., and Matthews A., “Structure and surface energy of low-index surfaces of stoichiometric α-Al2O3 and α-Cr2O3,” Surf. & Coatings Tech., 201 4205-4208 (2006).
    Suresh A. and Rawn M. J., “Crystallite and grain-size-dependent phase transformation in yttria-doped zirconia,” J. Am. Ceram. Soc., 86 [2] 360-362 (2003).
    Tasker P. W., “Surface of magnesia and alumina,” pp. 176- 189 in Structure and properties of MgO and Al2O3 ceramics, Advances in Ceramics, Volume 10, edited by Kingery W. D. The American Ceramic Society, Inc., Columbus, Ohio, 1984.
    Teng M. H., Marks L. D., and Johnson D. L., “Computer simulations of interactions between ultrafine alulmina particles produced by an arc discharge,” J. Mater. Res., 12 [1] 235-243 (1997).
    Tonejc A., Stubicar M., and Tonejc A. M., “Transformation of γ-AlOOH (boehmite) and Al(OH)3 (gibbsite) to α-Al2O3 (corundum) induced by high energy ball milling,” J. Mater. Sci. Lett., 13 519-520 (1994).
    Tsai D. S. and Hsieh C. C., “Controlled gelation and sintering of monolithic gels prepared from γ-alumina fume powder,” J. Am. Ceram. Soc., 74 [4] 830-836 (1991).
    Uchino K., Sadanaga E., and Hirose T., “Dependence of the crystal structure on the particle size in barium titanate,” J. Am. Cerac. Soc., 72 [8] 1555-1558 (1989).
    Vayssieres L., Haggeldt A., and Lindquist S. E., “Prupose-built metal oxide nanomaterials. The emergence of a new generation of smart materials,” Pure. Appl. Chem., 72 [1] 47-52 (2000).
    Volmer M., Kinetic der Phasenbildung; Steinkoff, Dresdem, Germany, 1939.
    Wang Y. G.., Bronsveld P. M., Hosson J. Th. M. De, Djuricic B., McGarry D., and Pickering S., “Twinning in θalumina investigated with high resolution transmission electron microscopy,” J. Europ. Ceram. Soc., 18 299-304 (1998).
    Wefers K., “Nomenclature, preparation, and properties of aluminum oxides, oxide hydroxides, and trihydroxides,” pp. 13-22 in Alumina chemicals: science and technology book, edited by Hart, L. D. The American Ceramic Society, Inc., Westerville, Ohio, 1990.
    Wefers K. and Bell G. M., “Oxides and Hydroxides of Alumina,” Technical Paper No. 19, Alcoa Research Laboratories, 1972.
    Wen H. L., Chen Y. Y., Yen F. S., and Huang C. Y., “Size characterization of θ- and α-Al2O3 crystallites during phase transformation,” Nanostructured mater, 11 [1] 89-101 (1999).
    Wen H. L. and Yen F. S., “Growth characteristics of boehmite-derived ultrafine theta and alpha-alumina particles during phase transformation,” J. Crys. Growth, 208 696-708 (2000).
    Wynnyckyj J. R. and Morris C. G., “A shear-type allotropic transformation in alumina,” Metallurgical transactions B, 16B 345-353 (1985).
    Xue L. A. and Chen I. W., “Influence of additives on the γ- to α- transformation of alumina,” J. Mater. Sci. Lett., 11 443-445 (1992).
    Yang Y., Wu Y. C., Li Y., and Cui P., “Preparation of ultrafine powders by thermal decomposition of AACH at low temperature,” Chinese J. Process. Eng., 2 [4] 325-329 (2002).
    Yarbrough W. A. and Roy R., “Microstructure evolution in sintering of AlOOH gels,” J. Mater. Res., 2 [4] 494-515 (1987).
    Yen F. S., Chang C. T., and Chang Y. H., “Characterization of barium titanium oxalaye tetrahydrate,” J. Am. Ceram. Soc., 73 [11] 3422-3427 (1990).
    Yen F. S., Chang J. L., and P. C. Yu, “Growth thermodynamics and kinetics of nano-sized alpha-Al2O3 powders,” Key Eng. Mater., 249 179-182 (2003).
    Yen F. S., Wang M. Y., and Chang J. L., “Temperature reduction of θ-to α-phase transformation induced by high-pressure pretreatments of nano-sized alumina powders derived from boehmite,” J. Cryst. Growth, 236 197-209 (2002).
    Yen F. S. and Yang R. J., “On the temperature of α’- to θ- Phase Retrogression of nano-sized Al2O3 powders,” 4th International Conference on Inorganic Materials, University of Antwerp, Belgium (2004).
    Yoshizawa Y., Hirao K., and Kanzaki S., “Fabrication of low cost fine-grained alumina powders by seeding for high performance sintered bodies,” J. Europ. Ceram. Soc., 24 325-330 (2004).
    Yu P. C., Yang R. J., Chang Y. T., and Yen F. S., “Fabrication of nano-scaled α-Al2O3 crystallites through heterogeneous precipitation of boehmite in a well-dispersed θ-Al2O3–suspensions,” J. Am. Ceram. Soc., 90 [8] 2340-2346 (2007).
    Zhang H. and Banfield J. F., “Thermodynamic analysis of phase stability of nanocrystalline titania,” J. Mater. Chem., 8 [9] 2073-2076 (1998).
    Zhang H. and Banfield J. F., “New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles,” Am. Miner., 84 528-535 (1999).
    Zhang H. and Banfield J. F., “Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2,” J. Phys. Chem. B, 104 3481-3487 (2000).
    Zhu H. and Averback R. S., “Sintering of nano-particle powders: simulations and experiments,” Mater. Manufactur. Process, 11 [6] 905-923 (1996).
    Zhu K. R., Zhang M. S., Hong J. M., and Yin Z., “Size effect on phase transition sequence of TiO2 nanocrystal,” Mater. Sci. Eng. A, 403 87-93 (2005).
    Zhu W. Z., “Grain Size Dependence of the transformation temperature of tetragonal to monoclinic phase in ZrO2 (Y2O3) ceramics,” Ceram. Int., 22 389-395 (1996).
    向性一,鈦酸鋇粉末鐵電區與介電性質之研究,國立成功大學礦冶及材料科學研究所,博士論文,1995年7月。
    汪明儀,奈米級氧化鋁粉中θ-→α-Al2O3相轉換之應力效應,國立成功大學資源工程所,碩士論文,2001年6月
    陳智成,氧化鋁-氧化鋯陶瓷複合材料之製備與性質研究,國立成功大學礦冶及材料科學研究所,博士論文,1994年6月。
    陳秀雯,利用Boehmite分散及包覆θ-Al2O3粉生產30 -50 nm α-Al2O3,國立成功大學資源工程研究所,碩士論文,2004年6月。
    游佩青,均質條件下奈米θ-Al2O3微粒之晶粒成長現象觀察,國立成功大學資源工程研究所,博士論文,2008年6月。
    溫惠玲,由Boehmite製得之氧化鋁粉末的θ→α-Al2O3相轉換,國立成功大學資源工程研究所,博士論文,2000年1月。

    下載圖示 校內:2011-02-04公開
    校外:2012-02-04公開
    QR CODE