| 研究生: |
許庭瑞 Hsu, Ting-Jui |
|---|---|
| 論文名稱: |
水蒸氣及金膜對Ge-GeOx核殼奈米線及Si1-xGexOy奈米線生長之影響 Effects of water vapor and gold films on the growth of Ge-GeOx nanowires and Si1-xGexOy nanowires |
| 指導教授: |
林文台
Lin, Wen-Tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 水氣 、奈米線 、金 |
| 外文關鍵詞: | nanowires, water vapor, Au |
| 相關次數: | 點閱:48 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討在氬氣中引入水氣,溫度1100℃於Si基板上以熱碳還原GeO2粉末生成Ge-GeOx奈米線的影響。無水氣時,會有少量的奈米線長成,但引入少許水氣便有顯著催化奈米線生長的現象。在此生成的奈米線為VS機制。目前結果顯示水氣除了扮演擔任氧化劑也同時有還原作用。其還原作用在於以熱碳還原GeO2粉末生長Ge-GeOx奈米線的方面扮演一重要角色,而使得Ge-GeOx奈米線能大量生長。在此探討水在幫助奈米線生長方面的驅勢及現象。而在基板邊緣會有另一型態的生成物,SiGeO奈米線,其為VLS機制。對於VS生成的Ge-GeO2奈米線,GeO2顆粒上僅有單一奈米線長出。然而對於VLS生成的SiGeO奈米線,卻有數十根奈米線同時從SiGeO液滴下層表面長出,而奈米線生長的同時亦將液滴推離Si基板。動力學效應使得藉由氫原子產生的還原反應偏好發生於VS生成的Ge-GeOx奈米線而非VLS生成的SiGeO奈米線,所以並不會有Ge-SiGeO核殼奈米線在SiGeO奈米線中形成。
另外,在鍍金膜Si基板上,溫度1100℃以熱碳還原GeO2粉末生成Ge-Si1-xGexOy奈米線的影響。在鍍金之後水氣影響趨勢與在純Si基板上所生長的Ge-GeOx奈米線奈米線相同,不同的地方在於同條件下,在有金膜催化後其奈米線變細且在同樣單為面積內的奈米線各數變多,而在外殼組成亦含有少量Si;在此生成的核殼奈米線為VS與VLS機制共存。在此探討鍍金膜對Ge-Si1-xGexOy奈米線之影響。而鍍金膜之後,其會較易於出現AuSi液態合金造成AuSiGeO液滴,故鍍金有利於SiGeO奈米線的生成。對於VLS生成的Ge-Si1-xGexOy奈米線,GeO2顆粒上僅有單一奈米線長出。和同樣為VLS生成的SiGeO奈米線,卻有數十根奈米線同時從SiGeO液滴下層表面長出。其差異在於液態合金中Au/Ge的組成比例及其顆粒尺寸。
In the present study, the effects of moist Ar on the growth of Ge-GeOx core-shell nanowires (Ge-GeOx NWs) and Si1-xGexOy nanowires (SiGeONWs) on bare Si and Au-coated Si substrates via the carbothermal reduction of GeO2 powders at 1100˚C were studied, respectively. The studies concerned with the bare Si and Au-coated Si substrates are reported successively.
No significant nanowires were grown on the bare Si substrates in dry Ar at a flow rate of 100-300 sccm until a bit of water in the range of 0.5-2 ml was loaded in the furnace. More water suppressed the growth of nanowires because of the exhaustion of graphite powders. Higher Ar flow rate decreased the length and diameter of Ge-GeOx NWs because of the dilution of GeO vapor, while it promoted the growth of SiGeONWs. The growth of Ge-GeOx NWs and SiGeONWs follows the vapor-solid and vapor-liquid-solid processes, respectively. The present study showed that the water vapor can serve as an oxidizing agent as well as a reducing agent at 1100˚C in enhancing the growth of SiGeONWs and Ge-GeOx NWs, respectively. The inhibition of the reduction of SiGeONWs by atomic hydrogen to form Ge-SiGeO core-shell nanowires may be due to the kinetic effect.
Significant Ge-Si1-xGexOy core-shell NWs (Ge-Si1-xGexOy NWs) and SiGeONWs were not grown on the Au-coated Si substrates in dry Ar at a flow rate of 100-300 sccm until a bit of water was loaded in the furnace. The amount of Ge-SiGeO NWs and SiGeO NWs increased with the volume of water. More water suppressed the growth of Ge-SiGeO NWs and SiGeONWs because of the exhaustion of more graphite powders. With increasing the thickness of Au films, the amount of SiGeONWs and the nuclei of Ge-SiGeO NWs increased. Higher Ar flow rate decreased the length and diameter of Ge-SiGeO NWs and the amount of SiGeONWs because of the dilution of GeO vapor. The growth of SiGeONWs follows the vapor-liquid-solid (VLS) process, while that of Ge-SiGeO NWs follows both the vapor-solid and VLS processes. The mechanisms for the effects of water vapor and Au catalyst in enhancing the growth of SiGeONWs and Ge-SiGeO NWs are discussed, respectively.
1. 閻子峰, “奈米催化技術”,五南圖書出版股份有限公司(2004)
2. R. Feynman, “Plenty of Room at the Bottom”, APS Annual Meeting (1959)
3. Drexler, K Eric. Engines of Creation.London:Fourth Eastate(1990)
4. 馬振基, “奈米材料科技原理與應用”,全華科技(2003)
5. 盧永坤, “奈米科技概論”,滄海書局(2005)
6. M.F. Crommie, C.P. Lutz, D.M. Eigler, Science,262,218 (1993)
7. 陳貴賢, 吳季珍, “物理雙月刊”, 23, 609 (2001)
8. K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, and H. Kakibayashi, J. Appl. Phys. 77, 447 (1995)
9. Frederick C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, Appl. Phys. Lett. 75, 1700 (1999)
10. Y. Li, G. W. Meng, and L. D. Zhang, and F. Phillipp, Appl. Phys. Lett. 76, 2011 (2000)
11. Y. Saito, S. Uemura, Carbon 38, 169 (2000)
12. M. Hirakawa, S. Sonoda, C. Tanaka, H. Murakami, H. Yamakawa, Appl. Surf. Sci. 169-170, 662 (2001)
13. S. M. Lee, K. S. Park, Y. C. Chai, Y. S. Park, J.M. Bok, D. J. Bae, K. S. Nahm, Y. G. Choi, S. C. Yu, N. Kim, T. Frauenheim, Y. H. Lee, Synth. Met. 113, 209 (2000)
14. R. T. Yang, Carbon 38, 623 (2000)
15. J. Hu, T. W. Odom, and C. M. Lieber, Acc. Chem. Res. 32, 435 (1999)
16. C. L. Cheung, J. H. Hafner, T. W. Odom, K. Kim, and C. M. Lieber, Appl. Phys. Lett. 76, 3136 (2000)
17. H. Dai, J.H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, Nature 384, 147 (1996)
18. D.P. Yu, Z.G. Bai, J.J. Wang, Y.H. Zou, W. Qian, J.S. Fu, H.Z. Zhang, Y. Ding, G.C. Xiong, L.P. You, J. Xu, and S.Q. Feng, Phys. Rev. B 59, R2498 (1999)
19. Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, T. Karali, H. Terrones, J.P. Hare, P.D. Townsend, H.W. Kroto, and D.R.M. Waltson, Adv. Mater. 11, 844 (1999)
20. A. P. Alivisatos, Science 271, 933 (1996)
21. F. Marlow, M. D. McGehee, D. Zhao, B. F. Chmelka, and G. D. Stucky, Adv. Mater. 11, 632 (1999)
22. D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z.G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, Appl. Phys. Lett. 73, 3076 (1998)
23. J. R. Heath, F. K. LeGoues, Chem. Phys. Lett. 208, 263 (1993)
24. D. Wang and H. Dai, Angew. Chem. Int. Ed. 41, 4783 (2002)
25. S. Kodambaka, J. Tersoff, M.C. Reuter, F.M. Ross, Science,316,729(2007)
26. T. Hanrath and B. A. Korgel , J. Am. Chem. Soc. 124, 1424 (2002)
27. D. Wang, Y. L. Chang, Q. Wang, J. Cao, D. B. Farmer, R. G. Gordan, and H. Dai, J. Am. Chem. Soc. 126, 11602 (2004)
28. Y. Wu and P. Yang, Appl. Phys. Lett. 77, 43 (2000)
29. Y. Huang, J. Lin, J. Zhang, X.X. Ding, S. R. Qi, and C. C. Tang, Nanotechnology 16, 1369 (2005)
30. J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S. T. Lee, Adv. Mater. 15, 70 (2003)
31. C. Y. Ko,and W. T. Lin, Nanotechnology 17,4464(2006)
32. Y. F. Zhang, Y. H. Tang, N. Wang, C.S. Lee, I. Bello, and S. T. Lee, Phys. Rev. B 61, 4518 (2000)
33. M. Zacharias and P. M. Fauchet, J. Non-Cryst. Solids 227-230, 1058 (1998)
34. A. Margaryan, M.A. Piliavin, Germanate Glasses, Structure, Spectroscopy, and Properties, Artech House, Boston, MA, p. 135 (1993)
35. Y. H. Tang, Y. F. Zhang, N. Wang, I. Bello, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 74, 3824 (1999)
36. J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, Adv. Mater. 14, 1396 (2002)
37. Y. J. Zhang, J. Zhu, Q. Zhang, Y. J. Yan, N. L. Wang, X. Z. Zhang, Chem. Phys. Lett. 317, 504 (2000)
38. Z. Jiang, T. Xie, G. Z. Wang, X. Y. Yuan, C. H. Ye, W. P. Cai, G. W. Meng, G. H. Li, and L. D. Zhang, Mater. Lett. 59, 416 (2005)
39. P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, M. S. Khil, D. R. Lee, and E. K. Suh, J. Chem. Phys. 121, 441 (2004)
40. X. C. Wu, W. H. Song, B. Zhao, Y. P. Sun, and J. J. Du, Chem. Phys. Lett. 349, 210 (2001)
41. P. Hidalgo, B. Mendez, and J. Piqueras, Nanotechnology 16, 2521 (2005)
42. Y.K. Tseng, I.N. Lin, K.S. Liu, T.S. Lin and I.C. Chen, J. Mater. Res. 18, 714 (2003)
43. Y. Liu and Y. Liu, J. Phys. Chem. B 109, 20746(2005)
44. Y. Huang, S. Yue, Z. Wang, Q. Wang, C. Shi, Z. Xu, X.D. Bai, C. Tang and C. Gu, J. Phys. Chem. B 110, 796(2006)
45. C.H. Xu, C.H. Woo, S.Q. Shi, Superlattices and Microstructures 36,31(2004)
46. K. Hong, W. Yiu, H. Wu, J. Gao and M. Xie, Nanotechnology 16,1608(2005)
47. F. Xu and S.D. Tse, Appl. Phys. Lett. 88, 243115 (2006)
48. S.P. Ge, K.L. Jiang, X.X. Lu, Y.F. Chen, R.M. Wang, S.S. Fan, Adv. Mater. 17,56 (2005)
49. B.V. Kamenev, V. Sharma, L. Tsybeskov, T.I. Kamins, Phys. stat. sol. 202, 2753 (2005)
50. H. Jagannathan, M. Deal, Y.Nishi, J. Woodruff, C. Chidsey, P.C. McIntyre, J.Appl. Phys.,100, 024318 (2006)
51. H. Adhikari, A.F. Marshall, E.D. Chidsey, and P.C. McIntyre,Nano Letters 6,318 (2006)
52. X. C. Wu, J. M. Hong, Z. J. Han, and Y. R. Tao, Chem. Phys. Lett. 373, 28 (2003)
53. C. Y. Chen, C. I. Lin, and S. H. Chen, Br. Ceram. Trans. 99, 57 (2000)
54. J. P. Murray, A. Steinfeld, and E. A. Fletcher, Energy 20, 695 (1995)
55. M. Johnsson, Solid State Ionics 172, 365 (2004)
56. C. N. R. Rao, G. Gundiah, F. L. Deepak, A. Govindaraj, and A. K. Cheetham, J. Mater. Chem. 14, 440 (2004)
57. A. Alizadeh, E. T. Nassaj, and N. Ehsani, J. Eur. Ceram. Soc. 24, 3227 (2004)
58. K. P. Kalyanikutty, G. Gundiah, A. Govindaraj, and C.N. R. Rao, J. Nanosci. Nanotech. 5, 421 (2005)
59. P. Nguyen, H. T. Ng, and M. Meyyappan, Adv. Mater. 17, 549 (2005)
60. S. H. Li, X. F. Zhu, Y. P. Zhao, J. Phys. Chem. B 108, 17032 (2004)
61. S. Kar and S. Chaudhuri, Solid State Commun. 133, 151 (2005)
62. Y. C. Lin and W. T. Lin, Nanotechnology 16, 1648 (2005)
63. B. T. Park and K. Yong, Nanotechnology 15, S365 (2004)
64. Y. Ryu, T. Tak, and K. Yong, Nanotechnology 16, S370 (2005)
65. H. Adhikari , P. C. Mclntyre, S. Sun, P. Pianetta, C. E. D. Chidsey, Appl. Phys. Lett. 87, 263109 (2005)
66. H. Adhikari , A. F. Marshall, C. E. D. Chidsey, and P. C. Mclntyre, Nano Lett. 6, 318 (2006)
67. T. Guo﹐P. Nikolaev﹐A. Thess﹐D. T. Colbert﹐R. E. Smalley﹐Chem. Phys. Lett. 243, 49 (1995)
68. Y. F. Zhang, Y. H. Tang, N. Wang, C.S. Lee, I. Bello, and S. T. Lee, Phys. Rev. B 61, 4518 (2000)
69. Y. H. Tang, Y. F. Zhang, N. Wang, I. Bello, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 74, 3824 (1999)
70. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001)
71. B. D. Yao, Y. F. Chan, and N. Wang, Appl. Phys. Lett. 81, 757 (2002)
72. Y. B. Li, T. Bando, D. Golberg, and K. Kurashima, Appl. Phys. Lett. 81, 5048 (2002)
73. J. P. Murray, A. Steinfeld, and E. A. Fletcher, Energy 20, 695 (1995)
74. N. R. B. Coleman, K. M. Ryan, T. R. Spalding, J. D. Holmes, and M. A. Morris, Chem. Phys. Lett. 343, 1 (2001)
75. Y. Yin, Y. Lu, Y. Sun, and Y. Xia, Nano Lett. 2, 427 (2002)
76. B. Gates, Y. Wu, Y. Yin, P. Yang, and Y. Xia, J. Am. Chem. Soc. 123, 11500 (2001)
77. 傅耀賢, “新穎奈米線棒低溫合成技術”, 化工資訊與商情, 第2期 (2003)
78. C. N. R. Rao, A. Govindaraj, F.L. Deepak, N. A. Gunari, and M. Nath, Appl. Phys. Lett. 78, 1853 (2001)
79. A. Govindaraj, F.L. Deepak, N.A. Gunari, C. N. R. Rao, Israel J. Chem. 41, 23 (2001)
80. C. N. R. Rao, F. L. Deepak, G. Gundiah, and A. Govindaraj, Prog. Solid State Chem. 31, 5 (2003)
81. R. S. Wagner, and W. C. Ellis, Appl. Physl. Lett. 4, 89 (1964)
82. R. S. Wagner, and W. C. Ellis, Trans. Met. Soc. AIME 233, 1053 (1965)
83. R. S. Wagner, “Whisker Technology”, Ed. A.P. Levitt, Wiley New York, pp.47-119 (1970)
84. Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
85. J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, Adv. Mater. 14, 1396 (2002)
86. L. Dai, X. L. Chen, T. Zhou, and B. Q. Hu, J. Phys.: Condens. Matter 14, L473 (2002)
87. L. Dai, X. L. Chen, J. K. Jian, W. J. Wang, T. Zhou, and B. Q. Hu, Appl. Phys. A 76, 625 (2003)
88. R. S. Wagner, and W. C. Ellis, Appl. Physl. Lett. 4, 89 (1964)
89. R. S. Wagner, and W. C. Ellis, Trans. Met. Soc. AIME 233, 1053 (1965)
90. R. S. Wagner, “Whisker Technology”, Ed. A.P. Levitt, Wiley New York, pp.47-119 (1970)
91. Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
92. M. Sanjay, S. Hao, S. Vladimir, and W. Ulf, Chem. Mater. 16, 2449 (2004)
93. C.B. Jin, J.E. Yang, and M.H. Jo, Appl. Phys. Lett. 88,193105 (2006)
94. Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, J. Am. Chem. Soc. 124, 1817 (2002)
95. Z. Pan, S. Dai, D. D. Beach, and D. H. Lowndes, Nano Lett. 3, 1279 (2003)
96. Z. W. Pan, S. Dai, D. B. Beach, D. H. Lowndes, Appl. Phys. Lett. 83, 3159 (2003)
97. S. Sun, G. Meng, M. Zhang, Y. Hao, X. Zhang, and L. Zhang, J. Phys. Chem. B 107,13029 (2003)
98. S. T. Lee, N. Wang, Y. F. Zhang, and Y. H. Tang, MRS Bull. 24, 36 (1999)
99. S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, and Y. W. Chung, J. Mater. Res. 14, 4503 (1999)
100. N. Wang, Y. H. Tang, Y. F. Zhang, C. S .Lee, and S. T. Lee, Phys. Rev. B 58, R16024 (1998)
101. Y. F. Zhang, Y. H. Tang, N. Wang, C.S. Lee, I. Bello, and S. T. Lee, Phys. Rev. B 61, 4518 (2000)
102. J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S. T. Lee, Adv. Mater. 15, 70 (2003)
103. T. S. Chu, R. Q. Zhang, and H. F. Cheung, J. Phys. Chem. B 105, 1705 (2001)
104. R. Q. Zhang, Y. Lifshitz, and S. T. Lee, Adv. Mater. 15, 635 (2003)
105. X. M. Meng, J. Q. Hu, Y. Jiang, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 83, 2241 (2003)
106. W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 345, 377 (2001)
107. H. Y. Peng, X. T. Zhou, N. Wang, Y. F. Zheng, L. S. Liao, W. S. Shi, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 27, 263 (2000)
108. W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Adv. Mater. 13, 591 (2001)
109. W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 78, 3304 (2001)
110. W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, J. Vac. Sci. Technol. B 19, 1115 (2001)
111. J. Q. Hu, X. L. Ma, Z. Y. Xie, N. B. Wong, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 344, 97 (2001)
112. Y. H. Tang, N. Wang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, Appl. Phys. Lett. 75, 2921 (1999)
113. 汪建民等人, “材料分析”, 中國材料科學學會 (1998)
114. D. C. Paine, C. Caragianis, and Y. Shigesato, Appl. Phys. Lett. 60, 2886 (1992)
115. D. C. Paine, C. Caragianis, T. Y. Kim, and Y. Shigesato, Appl. Phys. Lett. 62, 2842 (1993)
116. W. S. Liu, J. S. Chen, M. A. Nicolet, V. Arbet-Engels, and K. L. Wang, Appl. Phys. Lett. 62, 3321 (1993)
117. X.H. Sun, C.Didychuk, T.K. Sham and N.B. Wong, Nanotechnology 17, 2925 (2006)
118. J.Y. Zhang and X.M. Bao, Appl. Phys. Lett., 73,1790 (1998)
119. J.H. He, T.H. Wu, C.L. Hsin, L.J. Chen, Z.L. Wang, Electrochemical and Solid-State Letters, 8,G254 (2005)
120. J.H. He, W.W. Wu, S.W. Lee, L.J. Chen, Y.L. Chueh, and L.J. Chou, Appl. Phys. Lett., 86,263109 (2005)
121. C.Y. Ko, W.Y. Hsieh, T.J. Hsieh, T.J. Hsu, and W.T. Lin, J. Mater. Res., 22,1618 (2007)
122. 郭正次.朝春光編著, “奈米結構材料科學”, 全華科技, 93年4月, Chap.5.
123. K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, and F. Willaime, Science 278, 653 (1997)
124. Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
125. S.T. Lee, Y.F. Zhang, N. Wang, Y.H. Tang, I. Bello, C.S. Lee, and Y.W. Chung, J. Mater. Res. 14, 4503 (1999)