| 研究生: |
林致緯 Lin, Zhi-Wei |
|---|---|
| 論文名稱: |
近紅外光驅動釋放型微針於癌症化療及光熱協同治療之應用 Near-Infrared Light-Triggerable Microneedles for Chemo-Photothermal Synergistic Therapy |
| 指導教授: |
陳美瑾
Chen, Mei-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 可驅動式微針 、近紅外光 、控制釋放 、協同作用 、癌症治療 |
| 外文關鍵詞: | Triggerable microneedle, Near-infrared light, On-demand controlled release, Synergistic effect, Cancer treatment |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以兩階段離心灌模方法製備出包覆抗癌藥阿黴素(doxorubicin, DOX)和具光熱轉換效應之六硼化鑭奈米粒子(lanthanum hexaboride, LaB6)之光敏型微針,使用生物可分解性高分子聚己內酯(polycaprolactone, PCL)做為包覆藥物及奈米粒子的微針主體,後端結合水溶性之聚乙烯吡咯烷酮(polyvinylpyrrolidone, PVP)和聚乙烯醇(polyvinyl alcohol, PVA)做為支撐陣列,開發一可完全鑲嵌入皮膚並可藉由近紅外光驅動藥物釋放之微針貼片。每片微針可包覆約1013 43 μg DOX。微針內的奈米粒子可在吸收近紅外光後將其轉換為熱能,加熱微針使其熔化(約50 C)而釋放出藥物。經體外及活體皮膚穿刺結果證實,穿刺深度可達700 50 m,水溶性支撐陣列可提供機械強度,幫助光敏型微針完全刺入皮膚,並在吸收皮膚內之水份後溶解,僅留微針在皮膚內進行藥物傳輸及光熱治療。經由光驅動藥物釋放實驗證實,微針僅在照射近紅外光且微針溫度達50 C時才釋放藥物,藥物釋放之劑量可隨照光次數(週期)及時間增加而成比例上升(每週期3分鐘約釋放12;每週期6分鐘約釋放23),且能重覆地進行驅動釋放。將此微針應用於帶有腫瘤之小鼠,探討微針所提供之協同作用與單獨化學治療或光熱治療對於消除腫瘤的能力,經照射3個週期(每週期3分鐘,間隔3天)之近紅外光後,協同治療組確實在治療後10天,腫瘤完全消失,持續觀察至30天,老鼠已回復至正常的生長狀態;其他組別在初期可抑制腫瘤成長,但皆無法完全將腫瘤消除,殘存的腫瘤會繼續成長直至老鼠死亡。以上結果證實,此光敏型微針確實能鑲嵌於皮膚中,並藉由近紅外光驅動釋放出包覆之藥物及提供熱治療,有效的消除腫瘤,未來將可應用於表淺性癌症之治療或止痛、麻醉藥物之經皮傳輸上。
In this study, we developed doxorubicin (DOX)-loaded near-infrared (NIR) light-triggerable microneedles (MNs) to combine chemotherapy and photothermal therapy in one system. The separable MNs are consisted of biodegradable polycaprolactone (PCL) microneedles and a dissolving supporting array, which was made of polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA). The anticancer drugsdoxorubicin (DOX) and lanthanum hexaboride (LaB6) nanoparticles (NPs) were encapsulated in PCL. DOX content in each MN patch was 1013 43 μg. The skin insertion tests showed that the supporting array can provide mechanical strength to fully insert microneedles into the skin with penetration depth of 700 50 m and it can be totally dissolved by skin interstitial fluid. The NIR light-triggered release experiments demonstrated that MNs can quickly melt at 50 C due to the heating of the encapsulated LaB6 NPs when NIR irradiation and then release DOX into the punctured tissue. The amount of released drugs can be easily controlled by adjusting the irradiation periods and cycles and they exhibited a approximately proportional relationship. In vivo antitumor activity tests demonstrated the DOX-loaded MNs with external NIR photothermal therapy significantly enhanced the therapeutic effect of cancer treatment. Compared with chemotherapy or photothermal therapy alone, the combined treatment possessed a better therapeutic efficacy, resulting from a synergistic effect. In conclusion, we believe that the NIR-triggerable MNs are promising and may serve as a useful system for superficial cancer treatment or transdermal delivery of anesthetic or anodyne.
[1] Waller DG, Renwick AG, Gruchy BS, George CF. The first pass metabolism of nifedipine in man. Br J Clin Pharmacol 1984;18:951-4.
[2] Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 2010;1:149-73.
[3] Timko BP, Dvir T, Kohane DS. Remotely Triggerable Drug Delivery Systems. Adv Mater 2010;22:4925-43.
[4] Sy JC, Seshadri G, Yang SC, Brown M, Oh T, Dikalov S, Murthy N, Davis ME. Sustained release of a p38 inhibitor from non-inflammatory microspheres inhibits cardiac dysfunction. Nat Mater 2008;7:863-8.
[5] Choleris E, Little SR, Mong JA, Puram SV, Langer R, Pfaff DW. Microparticle-based delivery of oxytocin receptor antisense DNA in the medial amygdala blocks social recognition in female mice. Proc Natl Acad Sci USA 2007;104:4670-75.
[6] Kohane DS, Holmes GL, Chau Y, Zurakowski D, Langer R, Cha BH. Effectiveness of Muscimol-containing Microparticles against Pilocarpine-induced Focal Seizures. Epilepsia 2002;43:1462-68.
[7] Ciolino JB, Hoare TR, Iwata NG, Behlau I, Dohlman CH, Langer R, Kohane DS. A Drug-Eluting Contact Lens. Invest Ophthalmol Vis Sci 2009;50:3346-52.
[8] Moses MA, Brem H, Langer R. Advancing the field of drug delivery: Taking aim at cancer. Cancer Cell 2003;4:337-41.
[9] Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA–PEG nanoparticles. Proc Natl Acad Sci USA 2008;105:17356-61.
[10] Ruvinov E, Leor J, Cohen S. The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials 2010 ;31:4573-82.
[11] Edelman ER, Brown L, Langer R. Quantification of insulin release from implantable polymer-based delivery systems and augmentation of therapeutic effect with simultaneous release of somatostatin. J Pharm Sci 1996;85:1271-75.
[12] Castillo J, Curley J, Hotz J, Uezono M, Tigner J, Chasin M, Wilder R, Langer , Berde C. Glucocorticoids prolong rat sciatic nerve blockade in vivo from bupivacaine microspheres. Anesthesiology 1996;85:1157-66.
[13] Kohane DS, Smith SE, Louis DN, Colombo G, Ghoroghchain P, Hunfeld NGM, Berde CB, Langer RS. Prolonged duration local anesthesia from tetrodotoxin-enhanced local anesthetic microspheres. Pain 2003;104:415-21.
[14] Epstein-Barash H, Shichor I, Kwon AH, Hall S, Lawlor MW, Langer R, Kohane DS. Prolonged duration local anesthesia with minimal toxicity. Proc. Natl. Acad. Sci. USA 2009;106:7125-30.
[15] Bawa P, Pillay V, Choonara YE, du Toit LC. Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater 2009;4:022001.
[16] Ntziachristos V, Ripoll J, Wang LV, Weissleder R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 2005;23:313-20.
[17] Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol 2001;19:316-7.
[18] Murkin JM, Arango M. Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth 2009;103 Suppl 1:i3-13.
[19] Honar AL, Kang KA. Effect of the source and detector configuration on the detectability of breast cancer. Comp Biochem Physiol A Physiol 2002;132:9-15.
[20] Volodkin DV, Skirtach AG, Mohwald H. Near-IR remote release from assemblies of liposomes and nanoparticles. Angew Chem Int Ed Engl 2009;48:1807-9.
[21] Yavuz MS, Cheng Y, Chen J, Cobley CM, Zhang Q, Rycenga M, Xie J, Kim C, Song KH, Schwartz AG, Wang LV, Xia Y. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater 2009;8:935-9.
[22] Hribar KC, Lee MH, Lee D, Burdick JA. Enhanced release of small molecules from near-infrared light responsive polymer-nanorod composites. ACS Nano 2011;5:2948-56.
[23] Park JH, von Maltzahn G, Ong LL, Centrone A, Hatton TA, Ruoslahti E, Bhatia SN, Sailor MJ. Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery. Adv Mater 2010;22:880-5.
[24] Kuo TR, Hovhannisyan VA, Chao YC, Chao SL, Chiang SJ, Lin SJ, Dong CY, Chen CC. Multiple release kinetics of targeted drug from gold nanorod embedded polyelectrolyte conjugates induced by near-infrared laser irradiation. J Am Chem Soc 2010;132:14163-71.
[25] Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 2008;23:217-28.
[26] Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts Chem Res 2008;41:1578-86.
[27] Jain PK, Huang X, El-Sayed IH, El-Sayad MA. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2007;2:107-18.
[28] 賴柏宏 2009,六硼化鑭複合奈米粒子的製備及其在生醫上的應用,國立成功大學化學工程研究所碩士論文.
[29] Compton CC, Byrd DR, Garcia-Aguilar J; Kurtzman SH, Olawaiye A, Washington MK. AJCC Cancer Staging Atlas 2010.
[30] Hollen PJ, Grallab RJ, Krisc MG, Potanovichc LM. Quality of life assessment in individuals with lung cancer: Testing the lung cancer symptom scale (LCSS). Eur J Cancer 1993;29 Suppl 1:S51-58.
[31] http://www.mayoclinic.com/health/medical/IM00675
[32] Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 1980;284:67-8.
[33] Kubota Y, Kleinman HK, Martin GR, Lawley TJ. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 1988;107:1589-98.
[34] Vernon CC, Hand JW, Field SB, Machin D, Whaley JB, van der Zee J, van Putten WL, van Rhoon GC, van Dijk JD, González González D, Liu FF, Goodman P, Sherar M. Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. Int. J. Radiat Oncol Biol Phys 1996; 35:731-44.
[35] Neal DE, Marsh C, Bennett MK, Abel PD, Hall RR, Sainsbury JR, Harris AL. Epidermal-growth-factor receptors in human bladder cancer: comparison of invasive and superficial tumours. Lancet 1985;325:366-8.
[36] Heney NM, Ahmed S, Flanagan MJ, Frable W, Corder MP, Hafermann MD, Hawkins IR. Superficial bladder cancer: progression and recurrence. J Urol 1983;130:1083-6.
[37] Muto M, Minashi K, Yano T, Saito Y, Oda I, Nonaka S, Omori T, Sugiura H, Goda K, Kaise M, Inoue H, Ishikawa H, Ochiai A, Shimoda T, Watanabe H, Tajiri H, Saito D. Early Detection of Superficial Squamous Cell Carcinoma in the Head and Neck Region and Esophagus by Narrow Band Imaging: A Multicenter Randomized Controlled Trial. J Clin Oncol 2010; 28:1566-72.
[38] Tincani AJ, Brandalise N, Altemani A, Scanavini RC, Valério JB, Lage HT, Molina G, Martins AS. Diagnosis of superficial esophageal cancer and dysplasia using endoscopic screening with a 2% lugol dye solution in patients with head and neck cancer. Head Neck 2000;22:170-4.
[39]http://www.twhealth.org.tw/index.php?option=com_zoo&task=item&item_id=187&Itemid=21
[40] http://www.biology-online.org/dictionary/Synergistic_effect
[41] Tomuleasa C, Soritau O, Orza A, Dudea M, Petrushev B, Mosteanu O, Susman S, Florea A, Pall E, Aldea M, Kacso G, Cristea V, Berindan-Neagoe I, Irimie A. Gold nanoparticles conjugated with cisplatin/doxorubicin/capecitabine lower the chemoresistance of hepatocellular carcinoma-derived cancer cells. J Gastrointest Liver Dis 2012;21:187-196.
[42] You J, Zhang GD, Li C. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano 2010;4:1033-41.
[43] Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Lübbe AS. Locoregional cancer treatment with magnetic drug targeting. Cancer Res 2000;60:6641-8.
[44] Creixell M, Bohórquez AC, Torres-Lugo M, Rinaldi C. EGFR-Targeted Magnetic Nanoparticle Heaters Kill Cancer Cells without a Perceptible Temperature Rise. ACS Nano 2011;5:7124-29.
[45] Jordan A, Scholz R, Maier-Hauff K, van Landeghem FK, Waldoefner N, Teichgraeber U, Pinkernelle J, Bruhn H, Neumann F, Thiesen B, von Deimling A, Felix R. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 2006;78:7-14.
[46] Fornari FA, Randolph JK, Yalowich JC, Ritke MK, Gewirtz DA. Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. Mol Pharmacol 1994;45:649-56.
[47] Momparler RL, Karon M, Siegel SE, Avila F. Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells. Cancer Res 1976;36:2891-5.
[48] You J, Zhang R, Zhang GD, Zhong M, Liu Y, Van Pelt CS, Liang D, Wei W, Sood AK, Li C. Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanoparticle: A platform for near-infrared light-triggered drug release. J Control Release 2012;158:319-28.
[49] You J, Zhang R, Xiong C, Zhong M, Melancon M, Gupta S, Nick AM, Sood AK, Li C. Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors. Cancer Res 2012;72:4777-86.
[50] Frederick CA, Williams LD, Ughetto G, Van der Marel GA, Van Boom JH, Rich A, Wang AHJ. Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin. Biochemistry 1990;29:2538-49.
[51] http://www.daviddarling.info/encyclopedia/C/cell_cycle.html
[52] Davis SP, Martanto W, Allen MG, Prausnitz MR. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans Biomed Eng 2005;52:909-15.
[53] Chen X, Kask AS, Crichton ML, McNeilly C, Yukiko S, Dong L, Marshak JO, Jarrahian C, Fernando GJ, Chen D, Koelle DM, Kendall MA. Improved DNA vaccination by skin-targeted delivery using dry-coated densely-packed microprojection arrays. J ontrolled release 2010;148:327-33.
[54] Noh YW, Kim TH, Baek JS, Park HH, Lee SS, Han M, Shin SC, Cho CW. In vitro characterization of the invasiveness of polymer microneedle against skin. Int J Pharm 2010;397:201-5.
[55] Lee JW, Choi SO, Felner EI, Prausnitz MR. Dissolving microneedle patch for transdermal delivery of human growth hormone. Small 2011;7:531-9.
[56] Chabri F, Bouris K, Jones T, Barrow D, Hann A, Allender C, Brain K, Birchall J. Microfabricated silicon microneedles for nonviral cutaneous gene delivery. Br J Dermatol 2004;150:869-77.
[57] Qiu Y, Gao Y, Hu K, Li F. Enhancement of skin permeation of docetaxel: a novel approach combining microneedle and elastic liposomes. J Control Release 2008;129:144-50.
[58] Donnelly RF, Morrow DI, McCarron PA, Woolfson AD, Morrissey A, Juzenas P, Juzeniene A, Iani V, McCarthy HO, Moan J. Microneedle-mediated intradermal delivery of 5-aminolevulinic acid: potential for enhanced topical photodynamic therapy. J Control Release 2008;129:154-62.
[59] Kalluri H, Kolli CS, Banga AK. Characterization of microchannels created by metal microneedles: formation and closure. AAPS J 2011;13:473-81.
[60] Verbaan FJ, Bal SM, van den Berg DJ, Dijksman JA, van Hecke M, Verpoorten H, van den Berg A, Luttge R, Bouwstra JA. Improved piercing of microneedle arrays in dermatomed human skin by an impact insertion method. J Control Release 2008;128:80-8.
[61] Park JH, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release 2005;104:51-66.
[62] Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials 2008;29:2113-24.
[63] Sullivan SP, Murthy N, Prausnitz MR. Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv Mater 2008;20:933-8.
[64] Park JH, Allen MG, Prausnitz MR. Polymer microneedles for controlled-release drug delivery. Pharm Res 2006;23:1008-19.
[65] Sullivan SP, Koutsonanos DG, Del Pilar Martin M, Lee JW, Zarnitsyn V, Choi S, Murthy N, Compans RW, Skountzou I, Prausnitz MR. Dissolving polymer microneedle patches for influenza vaccination. Nat Med 2010;16:915-20.
[66] Chu LY, Prausnitz MR. Separable arrowhead microneedles. J Control Release 2011;149:242-9.
[67] Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials 2008;29:2113-24.
[68] Fukushima K, Ise A, Morita H, Hasegawa R, Ito Y, Sugioka N, Takada K. Two-layered dissolving microneedles for percutaneous delivery of peptide/protein drugs in rats. Pharm Res 2011;28:7-21.
[69] González-González E, Kim YC, Speaker TJ, Hickerson RP, Spitler R, Birchall JC, Lara MF, Hu RH, Liang Y, Kirkiles-Smith N, Prausnitz MR, Milstone LM, Contag CH, Kaspar RL. Visualization of plasmid delivery to keratinocytes in mouse and human epidermis. Sci Rep 2011;1:158.
[70] Kim YC, Prausnitz MR. Enabling skin vaccination using new delivery technologies. Drug Deliv Transl Res 2011;1:7-12.
[71] Mikszta JA, Laurent PE. Cutaneous delivery of prophylactic and therapeutic vaccines: historical perspective and future outlook. Expert Rev Vaccines 2008;7:1329-39.
[72] Pearton M, Allender C, Brain K, Anstey A, Gateley C, Wilke N, Morrissey A, Birchall J. Gene delivery to the epidermal cells of human skin explants using microfabricated microneedles and hydrogel formulations. Pharm Res 2008;25:407-16.
[73] Kim M, Jung B, Park JH. Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin. Biomaterials 2012;33:668-78.
[74] Tsioris K, Raja WK, Pritchard EM, Panilaitis B, Kaplan DL, Omenetto FG. Fabrication of silk microneedles for controlled-release drug delivery. Adv Funct Mater 2012;22:330-5.
[75] Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 2001;55:203-16.
[76] Kweon H, Yoo MK, Park IK, Kim TH, Lee HC, Lee HS, Oh JS, Akaike T, Cho CS. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials 2003;24:801-8.
[77] Loh XJ, Peh P, Liao S, Sng C, Li J. Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. J Control Release 2010;143:175-82.
[78] Bosworth LA, Downes S. Physicochemical characterisation of degrading polycaprolactone scaffolds. Polym Degrad Stabil 2010;95:2269-76.
[79] Arote R, Kim TH, Kim YK, Hwang SK, Jiang HL, Song HH, Nah JW, Cho MH, Cho CS. A biodegradable poly(ester amine) based on polycaprolactone and polyethylenimine as a gene carrier. Biomaterials 2007;28:735-44.
[80] Inactive ingredients in FDA approved drugs. FDA/Center for drug evaluation and research, office of generic drugs, division of labeling and program support.
[81] Robinson BV, Sullivan FM, Borzelleca JF, Schwartz SL. PVP:A critical review of the kinetics and toxicology of polyvinylpyrrolidone (Povidone).
[82] Fromageau J, Brusseau E, Vray D, Gimenez G, Delachartre P. Characterization of PVA cryogel for intravascular ultrasound elasticity imaging. IEEE T Ultrason Ferr 2003;50:1318-24.
[83] 王冠雯 2012,可依需求控制藥物釋放之光敏型高分子微針貼片,國立成功大學化學工程研究所碩士論文。
[84] Cheng L, Yang K, Chen Q, Liu Z. Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS Nano 2012;6:5605-13.
[85] Shi X, Hua Gong H, Li YJ, Wang C, Cheng L, Liu Z. Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials 2013;34:4786-93.
[86] Cheng L, Yang K, Chen Q, Liu Z. Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS Nano 2012;6:5605-13.
[87] Liu HY, Liu TL, Wu XL, Li LL, Tan LF, Chen D, Tang FQ. Targeting gold nanoshells on silica nanorattles: a drug cocktail to fight breast tumors via a single irradiation with near-infrared laser light. Adv Mater 2012;24:755-61.
[88] 國立成功大學醫學院實驗動物中心法規
[89] Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 2007;21: 2683-710.
[90] Radaelli E, Ceruti R, Patton V, Russo M, Degrassi A, Croci V, Caprera F, Stortini G, Scanziani E, Pesenti E, Alzani R. Immunohistopathological and neuroimaging characterization of murine orthotopic xenograft models of glioblastoma multiforme recapitulating the most salient features of human disease.. Histol Histopathol 2009;24:879-91.
[91] http://www.nlac.org.tw/n2/n2-2-1-8.asp
[92] Chen CJ, Chen DH. Preparation of LaB6 nanoparticles as a novel and effective near-infrared photothermal conversion material. Chem Eng J 2012;180:33742.
校內:2018-08-30公開