| 研究生: |
陳建軒 Chen, Chien-Hsuan |
|---|---|
| 論文名稱: |
阿拉伯芥鹼性半乳糖苷酶蛋白質家族功能性分析 Functional Study of Alkaline α-Galactosidase Protein Family in Arabidopsis |
| 指導教授: |
黃浩仁
Huang, Hao-Jen |
| 共同指導教授: |
李瑞花
Lee, Ruey-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 熱帶植物科學研究所 Institute of Tropical Plant Sciences |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 阿拉伯芥 、鹼性半乳糖苷酶 、荷爾蒙 、非生物逆境 、基因表現 、功能分析 |
| 外文關鍵詞: | Arabidopsis, alkaline a-galactosidase, hormones, abiotic stresses, expression profiles |
| 相關次數: | 點閱:94 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
葉片老化(leaf senescence)是基因調控葉器官生長發育的最後程序,受到相當複雜的機制所調控,屬於一種計劃性細胞死亡,使有利用價值的營養能分解並重新分配到植株其他需要的部位再利用。葉片老化受到內在因子(如年齡、生殖生長和植物荷爾蒙等)以及外在環境因子(如極端溫度變化、空氣汙染物、缺乏養份或水分、病菌感染和機械傷害等)所影響。鹼性半乳糖苷酶是在植物特有酵素,只在中、鹼性環境下才具有活性,主要作用的對象是含有非還原端和側鏈帶有α-D galactosyl殘基的醣類如raffinose family of oligosaccharide(RFO)和醣脂digalactosyl diacylglycerol (DGDG)等受質,這些受質在植物的生長發育及抗非生物逆境上扮演重要角色。阿拉伯芥基因體中一共有3個鹼性半乳糖苷酶基因(At1g55740,At3g57520,At5g20250)位於第1,3,5染色體上,為了解這些基因如何受荷爾蒙及不同非生物逆境調控,本研究以荷爾蒙及非生物逆境做處理並利用RT-PCR觀察鹼性半乳糖苷酶基因表現模式,發現會明顯受離酸、茉莉酸等荷爾蒙以及冷、熱、滲透壓等逆境影響而有不同表現模式。此外也利用分離阿拉伯芥的原生質體進行短暫表現分析,觀察到不同鹼性半乳糖苷酶和報導基因GFP的融合蛋白會因RNA轉錄本剪接型式的不同而改變胞器表現位置。我們也建構並分離大量基因表現轉植株和T-DNA knockout突變株,同時也建構病毒誘導基因靜默(VIGS)載體,希望這些基因表現異常的植株及短暫基因靜默法能用來輔助探討不同鹼性半乳糖苷酶在植物生長發育及不同逆境下所扮演的基因功能。
Leaf senescence is a genetically programmed process that ultimately leads to organ death. It involves complex and highly regulated molecular and cellular events in response to developmental and environmental signals that allow efficient recycling of nutrients to other sink tissues. Alkaline a-galactosidases hydrolyze a variety of glycosides possessing non-reducing terminal and side-chain a-galactosyl residues such like raffinose family of oligosaccharide (RFO) and digalactosyl diacylglycerol (DGDG). These substrates are essential for plant growth and development, and against unfavorable environment. There are three alkaline a-galactosidases in Arabidopsis genome (At1g55740, At3g57520, At5g20250). We are interested in understand the physiological function of the protein family using Arabidopsis as model plant. In this study, the expression profiles of alkaline a-galactosidase transcripts in Arabidopsis seedings were examined under different phytohormones and abiotic stress treatments. Our results show ABA, JA, extreme temperature and osmotic stress significantly affect the expression levels of these genes. Arabidopsis alkaline a-galactosidase-GFP fusion products also show that they can express in different subcellular locations on different splicing variants. Arabidopsis overexpression transgenetic plants and T-DNA insertion mutants for these genes were isolated, and these plants ectopic expressed these alkaline a-galactosidases genes together with VIGS vector constructs will be use for functional studies of these genes in response to developmental and environmental signals.
A Nishizawa, Y Yabuta, S Shigeoka (2008) Galactinol and raffinose as a novel function to protect plants from oxidative damage. Plant physiol 147:1251-1263
A. Wahida, S. Gelania, M. Ashrafa, M.R. Foolad (2007) Heat tolerance in plants: An overview. Environmental and Experimental Botany 61:199–223
Bachmann M, Matile P, Keller F (1994) Metabolism of the raffinose family of oligosacchides in leaves of Ajuga reptens L. cold acclimation, translocation,and sink to source transition. Discovery of achain elongation system. Plant physiol 105:1335-1345
Brandon Moore, Li Zhou, Filip Rolland, Qi Hall, Wan-Hsing Cheng, Yan-Xia Liu, Ildoo Hwang,Tamara Jones, Jen Sheen(2003) Role of the Arabidopsis Glucose
Sensor HXK1 in Nutrient, Light, and Hormonal Signaling. Sciense reports 300:332-336
Carmi N, Zhang G, Petreikov M, Gao Z, Eyal Y, Granot D, Schaffer AA. Cloning and functional expression of alkaline a-galactosidase from melon fruit: similarity to plant SIP proteins uncovers a novel family of plant glycosyl hydrolase. Plant J. 33: 97–106.
Collier D.E., Thibodeau B.A. (1995)Changes in respiration and chemical content during autumnal senescence of Populus tremuloides and Quercus rubra leaves. Tree Physiology 15:759-764
Fan L, Zheng S, Wang X (1997) Antisense suppression of phospholipase Da retards abscisic acid- and ethylene -promoted senescence of postharvest Arabidopsis leaves. Plant Cell 9:2183-2196
Finkelstein R, Rock CD (2002) Abscisic acid biosynthesis and response. In CR Somerville, EM Meyerowitz, eds, The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD, doi/10.1199/tab.0058, http://www.aspb.org/
Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270: 1986-1988
Gan S (1995) Molecular characterization and genetic manipulation of plant senescence. Ph.D. Dissertation. University of Wisconsin-Madison, Madison, WI, USA
Gan S, Amasino RM (1996) Cytokinins in plant senescence: from spray and pray to clone
and play. BioEssays 18: 557-565
Gan S, Amasino RM (1997) Making sense of senescence. Molecular genetic regulation and manipulation of leaf senescence. Plant Physiol 113: 313-319
Gan S (2003) Mitotic and post-mitotic senescence in plants. Sci SAGE KE 2003: RE7
Giovannoni J (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52: 725-749
Keller F., Pharr D.M. (1996) Metabolism of carbohydrates in sinks and sources: galactosyl-sucrose oligosaccharides. Photoassimilate Distribution in Plants and Crops.Marcel Dekker, New York,pp 157-183
Keller F., Matile P. (1985) The role of the vacuole in storage and mobilization of stachyose in tubers of Stachys sieboldii Journal of plant physiology, 119:44, 369-380
Fletcher,R. A. and D. J. Osborne (1965). Regulation of protein synthesis and nucleic and synthesis by gilberellin during leaf senescence. Nature 207: 1176-1177.
Gan, S. and Amasino, R.M(1997). Making sense of senescence:molecular genetic regulation and manipulation of leaf senescence. Plant Physiol. 113: 313-319.
Grbic, V. and Bleecker, A. B. (1995). Ethylene regulates the timing of leaf senescence in Arabidopsis, Plant J, 8:595-602.
Harms K, Atzorn R, Brash A, Kühn H, Wasternack C, Willmitzer L, Peña-Cortés H (1995) Expression of a flax allene oxide synthase cDNA leads to increased endogenous
jasmonic acid (JA) levels in transgenic potato plants but not to a corresponding activation of JA-responding genes. Plant Cell 7: 1645-1654
He Y, Fukushige H, Hildebrand DF, Gan S (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 128: 876-884
He, Y. and Gan, S. 2002. A gene encoding an acyl hydrolase is involved in leaf senescence in Arabidopsis. Plant Cell 14:
805–815.
Hensel LL, Grbic V, Baumgarten DA, Bleecker AB (1993) Developmental and agerelated processes that influence the longevity and senescence of photosynthetic tissues in
Arabidopsis. Plant Cell 5: 553-564
Hildebrand DF, Fukushige H, Afitlhile M, Wang C (1998) Lipoxygenases in plant development and senescence. Chapt. 8. In AF Rowley, H Kuhn, T Schewe, eds, Eicosanoids and Related Compounds in Plants and Animals. Portland Press Ltd, London, pp 151-181
Hung, K. T. a.nd Kao. C., h. (1996). Promotive effect of jasmonates on the senescence of detached mazc leaves. J. Plant Grwoth Regul. 19:77-83.
Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413: 383-389
John I, Drake R, Farrell A, Cooper W, Lee P, Horton P, Grierson D (1995) Delayed leaf senescence in ethylene-deficient ACC-oxidase antisense tomato plants: molecular and physiological analysis. Plant J. 7: 483-490
John, L, Dark, R., Farrell, A., Cooper, W., Lee, P., Horton, P. and Grierson, D. (1995). Delayed leaf senescence in ethylene-deficient ACC-oxidase antisense tomato plants: molccular and physiological analysis.Plant J. 7:483-490.
Jordi,W., Schapendonk, A., Davelaar, E., Stoopen, G.M., Pot,C.S., De Visser, R., Van Rhijn J. A., Gan, S. and Amasino, R. M. (2000). Increased cytokinin levels in transgenic PSAG12–IPT tobacco plants have large direct and indirect effects on leaf senescence, photosynthesis and N partitioning. Plant Cell Environ. 23: 279–289.
J Joyard, E Maréchal, MA Block (1996)Plant galactolipids and sulfolipid: structure, distribution and biosynthesis. In Smallwood M, Knox JP Bowles DJ, eds Membrane: specialized function in plants. Oxford, UK: Bios Scientific Publishers, 411-458
Jouhet J, Mare´chal E, Baldan B, Bligny R, Joyard J, Block MA (2004) Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. J Cell Biol 167: 863–874
Kappers IF, Jordi W, Tsesmetzis M, Maas FM, Van Der Plas LHW (1998) GA4 does not require conversion into GA1 to delay senescence of Alstroemeria hybrida leaves. J Plant Growth Regul 17:89–93
Koike, T. (1990). Autumn coloring, photosynthetic performance and leaf development of deciduous broad-leaved trees in relation to forest sucession.Tree Physiol.. 7:21-32.
LD Nooden, JJ Guiamet, I John (1997) Senescence mechanisms. Physiologia Plant 101:746-753
Masclaux C, Valadier M-H, Brugiere N, Morot-Gaudry J-F, Hirel B (2000) Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. Planta 211: 510-518
MS Webb, BR Green (1991) Biochemical and biophysical properties of thylakoid acyl lipids. Biochimica et biophysica acta. Bioenergetics. 1060: 133-158
Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal
signaling. Science 300: 332-336
Morris K, MacKerness SA, Page T, John CF, Murphy AM, Carr JP, Buchanan-Wollaston V (2000) Salicylic acid has a role in regulating gene expression during leaf senescence.
Plant J 23: 677-685
Morris, K., Macherness, S.A.H., Page, T., John, C.F.,Murphy, A.M., Carr, J.P. and Buchanan-Wollaston, V. 2000. Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J. 23: 677–685.
Mur, L. A. J., Kenton, P., and Draper, J (1997). Something in the air: volatile singnals in plant dfefence. Trends Micorbiol. 5 297-300.
Nemeth K, Salchert K, Putnoky P, Bhalerao R, Koncz-Kalman Z, Stankovic-Stangeland B, Bako L, Mathur J, Okresz L, Stabel S, Geigenberger P, Stitt M, Redei GP, Schell J, Koncz C (1998) Pleiotropic control of glucose and hormone responses by PRL1, a nuclear WD protein, in Arabidopsis. Genes Dev 12: 3059-3073
Noodén LD (1988) Abscisic acid, auxin, and other regulators of senescence. In LD Noodén, AC Leopold, eds, Senescence and Aging in Plants. Academic Press, San Diego, pp 329-367
Oh, S.A., Park J.H., Lee, G.I., Park, K.H., Park, S.K. and
Nam, H.G. 1997. Identification of three genetic loci control-
ling leaf senescence in Arabidopsis thaliana. Plant J. 12:
527–535.
Panavas, T., Walker, E.L. and Rubinstein, B. 1998. Possible involvement of abscisic acid in senescence of daylily petal. J. Exp. Bot. 48: 1987–1997.
P Dörmann, C Benning (2002) Galactolipids rule in seed plants. Trends in Plant Science. 7:112-118
Peterbauer T, Richter A (2001) Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Sci Res 11: 185–197
Quirino BF, Normanly J, Amasino RM (1999) Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes. Plant Mol Biol 40: 267-278
Ranwala AP, Miller WB (2000) Preventive mechanisms of gibberellin4+7 and light on low-temperature-induced leaf senescence in Lilium cv. Stargazer. Postharvest Biol Technol 19: 85-92
RH Lee, JH Hsu, HJ Huang, SF Lo (2009) Alkaline α-galactosidase degrades thylakoid membranes in the chloroplast during leaf senescence in rice. The New phytologist 184:596 – 606
RH Lee, MC Lin, SC Chen (2004) A novel alkaline α-galactosidase gene is involved in rice leaf senescence. Plant molecular biology, 55: 281–295
RH Lee, CH Wang, LT Huang,SC Chen. (2001)Leaf senescence in rice plant:cloning and characterization of senescence up regulated genes. J Exp Bot,52:1117-1121
Richmond AE, Lang A (1957) Effect of kinetin on protein content and survival of detached Xanthium leaves. Science 125: 650-651
Sheen J., Hwang S., Niwa Y., Kobayashi H., and Galbraith D. W. (1995) Greenfluorescent
Smart C.M. (1994) Gene expression during leaf senescence. New phytol 126:419-488
Sprenger N, Keller F (2000) Allocation of raffinose family oligosaccharides to transport and storage pools in Ajuga reptans: the roles of two distinct galactinol synthases. Plant J 21: 249-258
U Feller, A Fischer(1994) Nitrogen metabolism in senescing leaves. Crit Rev Plant Sci 13:241-273
Ueda J, Kato J (1980) Isolation and identification of a senescence-promoting substance from wormwood (Artemisia absinthium L.). Plant Physiol 66: 246-249
Van Staden J, Cook E, Noodén LD (1988) Cytokinins and senescence. In LD Noodén, AC Leopold, eds, Senescence and aging in plants. Academic Press, San Diego, pp 281- 328
Wan-Hsing Cheng, Akira Endo, Li Zhou, Jessica Penney, Huei-Chi Chen, Analilia Arroyo, Patricia Leon, Eiji Nambara, Tadao Asami, Mitsunori Seo, Tomokazu Koshiba, and Jen Sheen(2002) A Unique Short-Chain Dehydrogenase/Reductase in Arabidopsis Glucose Signaling and Abscisic Acid Biosynthesis and Functions.PLANT CELL 14 (11): 2723-2743
Weaver, L.M., Gan, S., Quirino, B. and Amasino, R.M. 1998.A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol. Biol. 37: 455–469.
Wilkinson, J. Q., Lanahan, M. B., Yea, H. C., Giovannoni, J. J. and Klec, H.H. (1995). An ethylene -inducible componet of singal transduction encoded by nerver-ripe. Science 270:1807-180
Yuehui He, Weining Tang, Johnnie D. Swain, Anthony L. Green, Thomas P. Jack, and Susheng Gan (2001) Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant physiol 126:707-716
Zhu YX, Davies PJ (1997) The control of apical bud growth and senescence by auxin and gibberellin in genetic lines of peas. Plant Physiol 113: 631-637