簡易檢索 / 詳目顯示

研究生: 陳怡寬
Chen, Yi-Kuan
論文名稱: 利用細胞穿透胜肽運送DNA進入葉綠體
Study the import of DNA into chloroplasts by cell-penetrating peptides
指導教授: 張清俊
Chang, Ching-Chung
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 101
中文關鍵詞: 細胞穿透胜肽葉綠體
外文關鍵詞: Cell penetrating peptide, chloroplasts
相關次數: 點閱:130下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞穿透蛋白(CPP)具有DNA的結合能力,可將外源DNA傳送入植物細胞內。本研究利用CPP結合DNA的能力與蛋白質輸入葉綠體的通道,將外源DNA送入並表現於葉綠體中。利用大腸桿菌蛋白質表現系統表現並純化由葉綠體訊息胜肽(TP)和CPP (R9)所組合的重組蛋白(TP-CPP),而藉由Gel retardation assay可以確定此重組蛋白具有結合DNA的能力,將重組蛋白結合帶有受葉綠體啟動子調控的GFP表現卡匣的DNA片段再與純化的植物葉綠體在試管中混和反應後,利用螢光或共軛焦顯微鏡觀察GFP在葉綠體的表現。實驗結果顯示TP-CPP重組蛋白可藉由蛋白質輸入通道攜帶DNA進入葉綠體,再利用葉綠體的轉錄與轉譯系統進行表現,並在重組蛋白與DNA的N/P比值介於1至1.5時具有較佳的效率,且當DNA片段較小時效率較高,然而其效率仍低(1~6/107個),仍有待進一步改善。未來,期望可以將此TP-CPP重組蛋白運用在葉綠體轉殖技術與葉綠體蛋白質傳輸機制的研究上。

    Cell penetrating peptide (CPP), an Arg-rich small peptide can carry DNA or protein into plant cells. To explore the possibility of CPP as a DNA delivery system through Toc-Tic translocon complex to chloroplasts, the recombinant protein (TP-CPP) gene which the transit peptide (TP) from RbcS, and OsRpoTp or N-terminal of GST as a control fused with nona-arginine (R9) were respectively generated. The recombinant TP-CPP genes were cloned into pET21b vectors, and the recombinant proteins were expressed and purified from E.coli BL21 (DE3). In addition, the chloroplast gene expression vector pRCG1, carrying GFP reporter gene under the regulation of psaA promoter was previously constructed. The recombinant fusion proteins (TP-CPP) showed the DNA-binding ability by gel retardation assay. After the recombinant TP-CPP proteins were pre-mixed with pRCG1 or DNA only carrying GFP expressing cassette, the protein-DNA complex was incubated with intact chloroplasts for in vitro import assay. Subsequently, the chloroplasts expressing GFP were examined under the fluorescent or laser scanning confocal microscope. Our results demonstrated that TP-CPP can bind with DNA to form complex and be able to pass through the chloroplast translocons. Although the import efficiency is low (about 1~6 x 10-7), under the N/P (protein/DNA) ratio ranged from 1 to 1.5, the highest efficiency was observed. In addition, the efficiency for smaller cargo is better than that of large one. The efficiency of TP-CPP mediated DNA delivery to chloroplasts is still need to be improved. Hopefully, this novel delivery system can be applied in plastid transformation and the study of protein import process in the future.

    第一章、 前言 1 第二章、 文獻探討 2 1. 葉綠體轉殖技術的發展 2 2. 葉綠體表現系統的優點 3 3. CPP於植物學的研究 5 4. CPP進入細胞後的位置 7 5. 葉綠體膜上的蛋白通道 8 6. 葉綠體訊息蛋白 9 7. 細胞核編碼蛋白輸入葉綠體 10 8. 研究目的 11 第三章、 材料與方法 13 1. 實驗材料 13 1.1 生物材料 13 1.2 植物表現載體 13 1.3 大腸桿菌表現質體 14 2. 實驗方法 16 2.1 自然條件(Native condition)純化蛋白質 16 2.2 變性條件(Denature condition)純化蛋白質 17 2.3 SDS-PAGE 蛋白質電泳 19 2.4 Gel retardation assay 20 2.5 葉綠體in vitro import assay 21 2.6 西方墨點法分析送入葉綠體的蛋白質 23 2.7 構築植物細胞核表現載體 24 2.8 利用PEG導入DNA或CPP-DNA複合物於稻米原生質體 31 第四章、 實驗結果 35 1. 純化重組蛋白質 35 2. 利用CPP重組蛋白和DNA的結合 36 3. 利用CPP重組蛋白將DNA帶入葉綠體 37 4. 利用PEG將CPP-DNA複合物送至水稻原生質體中 41 第五章、 討論 42 1. 重組蛋白不可溶現象 42 2. Protein-DNA 結合能力 42 3. 葉綠體in vitro import 的效率 43 4. 葉綠體in vitro import中葉綠體的外觀及型態 45 5. 影響TP-CPP進入葉綠體的可能性 46 6. TP-CPP重組蛋白未來可能之應用 48 第六章、 參考文獻 50 圖 58 表 85 附錄一、藥品配製 91 附錄二、質體結構圖 97

    Agne, B., and Kessler, F. (2009). Protein transport in organelles: The Toc complex way of preprotein import. The FEBS journal 276, 1156-1165.
    Andres, C., Agne, B., and Kessler, F. (2010). The TOC complex: preprotein gateway to the chloroplast. Biochimica et biophysica acta 1803, 715-723.
    Bauer, J., Chen, K., Hiltbunner, A., Wehrli, E., Eugster, M., Schnell, D., and Kessler, F. (2000). The major protein import receptor of plastids is essential for chloroplast biogenesis. Nature 403, 203-207.
    Bayer, P., Kraft, M., Ejchart, A., Westendorp, M., Frank, R., and Rosch, P. (1995). Structural studies of HIV-1 Tat protein. Journal of molecular biology 247, 529-535.
    Becker, T., Hritz, J., Vogel, M., Caliebe, A., Bukau, B., Soll, J., and Schleiff, E. (2004a). Toc12, a novel subunit of the intermembrane space preprotein translocon of chloroplasts. Molecular biology of the cell 15, 5130-5144.
    Becker, T., Jelic, M., Vojta, A., Radunz, A., Soll, J., and Schleiff, E. (2004b). Preprotein recognition by the Toc complex. The EMBO journal 23, 520-530.
    Benz, J. P., Soll, J., and Bolter, B. (2009). Protein transport in organelles: The composition, function and regulation of the Tic complex in chloroplast protein import. The FEBS journal 276, 1166-1176.
    Block, M. D., Schell, J., and Montagu, M. V. (1985). Chloroplast transformation by Agrobacterium tumefaciens. The EMBO journal 4, 1367-1372.
    Boynton, J. E., Gillham, N. W., Harris, E. H., Hosler, J. P., Johnson, A. M., Jones, A. R., Randolph-Anderson, B. L., Robertson, D., Klein, T. M., Shark, K. B., and et al. (1988). Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240, 1534-1538.
    Chang, M., Chou, J. C., and Lee, H. J. (2005). Cellular internalization of fluorescent proteins via arginine-rich intracellular delivery peptide in plant cells. Plant & cell physiology 46, 482-488.
    Chen, C. P., Chou, J. C., Liu, B. R., Chang, M., and Lee, H. J. (2007).
    51
    Transfection and expression of plasmid DNA in plant cells by an arginine-rich intracellular delivery peptide without protoplast preparation. FEBS letters 581, 1891-1897.
    Cheng, S. F., Huang, Y. P., Chen, L. H., Hsu, Y. H., and Tsai, C. H. (2013). Chloroplast Phosphoglycerate Kinase Is Involved in the Targeting of Bamboo mosaic virus to Chloroplasts in Nicotiana benthamiana Plants. Plant physiology 163, 1598-1608.
    Chi, Y. H., Moon, J. C., Park, J. H., Kim, H. S., Zulfugarov, I. S., Fanata, W. I., Jang, H. H., Lee, J. R., Lee, Y. M., Kim, S. T., et al. (2008). Abnormal chloroplast development and growth inhibition in rice thioredoxin m knock-down plants. Plant physiology 148, 808-817.
    Chowdhury, K., and Bagasra, O. (2007). An edible vaccine for malaria using transgenic tomatoes of varying sizes, shapes and colors to carry different antigens. Medical hypotheses 68, 22-30.
    Chugh, A., Amundsen, E., and Eudes, F. (2009). Translocation of cell-penetrating peptides and delivery of their cargoes in triticale microspores. Plant cell reports 28, 801-810.
    Chugh, A., and Eudes, F. (2008). Cellular uptake of cell-penetrating peptides pVEC and transportan in plants. Journal of peptide science : an official publication of the European Peptide Society 14, 477-481.
    Cline, K., Henry, R., Li, C., and Yuan, J. (1993). Multiple pathways for protein transport into or across the thylakoid membrane. The EMBO journal 12, 4105-4114.
    Cui, C., Song, F., Tan, Y., Zhou, X., Zhao, W., Ma, F., Liu, Y., Hussain, J., Wang, Y., Yang, G., and He, G. (2011). Stable chloroplast transformation of immature scutella and inflorescences in wheat (Triticum aestivum L.). Acta biochimica et biophysica Sinica 43, 284-291.
    Daniell, H. (2002). Molecular strategies for gene containment in transgenic crops. Nature biotechnology 20, 581-586.
    Daniell, H., Lee, S. B., Panchal, T., and Wiebe, P. O. (2001). Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. Journal of molecular biology 311, 1001-1009.
    52
    De Marchis, F., Wang, Y., Stevanato, P., Arcioni, S., and Bellucci, M. (2009). Genetic transformation of the sugar beet plastome. Transgenic research 18, 17-30.
    Drin, G., Cottin, S., Blanc, E., Rees, A. R., and Temsamani, J. (2003). Studies on the internalization mechanism of cationic cell-penetrating peptides. The Journal of biological chemistry 278, 31192-31201.
    Dufourmantel, N., Pelissier, B., Garcon, F., Peltier, G., Ferullo, J. M., and Tissot, G. (2004). Generation of fertile transplastomic soybean. Plant molecular biology 55, 479-489.
    Emanuelsson, O., Nielsen, H., Brunak, S., and von Heijne, G. (2000). Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. Journal of molecular biology 300, 1005-1016.
    Emanuelsson, O., Nielsen, H., and von Heijne, G. (1999). ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein science : a publication of the Protein Society 8, 978-984.
    Fernandez-Carneado, J., Kogan, M. J., Pujals, S., and Giralt, E. (2004). Amphipathic peptides and drug delivery. Biopolymers 76, 196-203.
    Frankel, A. D., and Pabo, C. O. (1988). Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55, 1189-1193.
    Futaki, S., Suzuki, T., Ohashi, W., Yagami, T., Tanaka, S., Ueda, K., and Sugiura, Y. (2001). Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. The Journal of biological chemistry 276, 5836-5840.
    Gao, M., Li, Y., Xue, X., Wang, X., and Long, J. (2012). Stable plastid transformation for high-level recombinant protein expression: promises and challenges. Journal of biomedicine & biotechnology 2012, 158232.
    Gerbal-Chaloin, S., Gondeau, C., Aldrian-Herrada, G., Heitz, F., Gauthier-Rouviere, C., and Divita, G. (2007). First step of the cell-penetrating peptide mechanism involves Rac1 GTPase-dependent actin-network remodelling. Biology of the cell / under the auspices of the European Cell Biology Organization 99, 223-238.
    53
    Green, M., and Loewenstein, P. M. (1988). Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55, 1179-1188.
    Hinnah, S. C., Wagner, R., Sveshnikova, N., Harrer, R., and Soll, J. (2002). The chloroplast protein import channel Toc75: pore properties and interaction with transit peptides. Biophysical journal 83, 899-911.
    Hou, B. K., Zhou, Y. H., Wan, L. H., Zhang, Z. L., Shen, G. F., Chen, Z. H., and Hu, Z. M. (2003). Chloroplast transformation in oilseed rape. Transgenic research 12, 111-114.
    Inoue, H., Ratnayake, R. M., Nonami, H., and Akita, M. (2008). Development and optimization of an in vitro chloroplastic protein import assay using recombinant proteins. Plant physiology and biochemistry : PPB / Societe francaise de physiologie vegetale 46, 541-549.
    Jarver, P., and Langel, U. (2006). Cell-penetrating peptides--a brief introduction. Biochimica et biophysica acta 1758, 260-263.
    Jones, A. T. (2007). Macropinocytosis: searching for an endocytic identity and role in the uptake of cell penetrating peptides. Journal of cellular and molecular medicine 11, 670-684.
    Kim, D., Jeon, C., Kim, J. H., Kim, M. S., Yoon, C. H., Choi, I. S., Kim, S. H., and Bae, Y. S. (2006). Cytoplasmic transduction peptide (CTP): new approach for the delivery of biomolecules into cytoplasm in vitro and in vivo. Experimental cell research 312, 1277-1288.
    Kovacs-Bogdan, E., Soll, J., and Bolter, B. (2010). Protein import into chloroplasts: the Tic complex and its regulation. Biochimica et biophysica acta 1803, 740-747.
    Kumar, S., Dhingra, A., and Daniell, H. (2004a). Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant physiology 136, 2843-2854.
    Kumar, S., Dhingra, A., and Daniell, H. (2004b). Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant molecular biology 56, 203-216.
    Lakshmanan, M., Kodama, Y., Yoshizumi, T., Sudesh, K., and Numata, K.
    54
    (2013). Rapid and efficient gene delivery into plant cells using designed peptide carriers. Biomacromolecules 14, 10-16.
    Lanning, F. C. (1963). Plant Constituents, Silicon in Rice. Journal of agricultural and food chemistry 11, 435-437.
    Lee, S. B., Kwon, H. B., Kwon, S. J., Park, S. C., Jeong, M. J., Han, S. E., Byun, M. O., and Daniell, H. (2003). Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Molecular breeding : new strategies in plant improvement 11, 1-13.
    Lee, S. M., Kang, K., Chung, H., Yoo, S. H., Xu, X. M., Lee, S. B., Cheong, J. J., Daniell, H., and Kim, M. (2006). Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Molecules and cells 21, 401-410.
    Lelivelt, C. L., McCabe, M. S., Newell, C. A., Desnoo, C. B., van Dun, K. M., Birch-Machin, I., Gray, J. C., Mills, K. H., and Nugent, J. M. (2005). Stable plastid transformation in lettuce (Lactuca sativa L.). Plant molecular biology 58, 763-774.
    Li, H. M., and Chiu, C. C. (2010). Protein transport into chloroplasts. Annual review of plant biology 61, 157-180.
    Liu, C. W., Lin, C. C., Chen, J. J., and Tseng, M. J. (2007). Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant cell reports 26, 1733-1744.
    Lu, S. W., Hu, J. W., Liu, B. R., Lee, C. Y., Li, J. F., Chou, J. C., and Lee, H. J. (2010). Arginine-rich intracellular delivery peptides synchronously deliver covalently and noncovalently linked proteins into plant cells. Journal of agricultural and food chemistry 58, 2288-2294.
    Lundberg, P., and Langel, U. (2003). A brief introduction to cell-penetrating peptides. Journal of molecular recognition : JMR 16, 227-233.
    Mae, M., Myrberg, H., Jiang, Y., Paves, H., Valkna, A., and Langel, U. (2005). Internalisation of cell-penetrating peptides into tobacco protoplasts. Biochimica et biophysica acta 1669, 101-107.
    Mano, M., Teodosio, C., Paiva, A., Simoes, S., and Pedroso de Lima, M. C. (2005). On the mechanisms of the internalization of S4(13)-PV
    55
    cell-penetrating peptide. The Biochemical journal 390, 603-612.
    Melikov, K., and Chernomordik, L. V. (2005). Arginine-rich cell penetrating peptides: from endosomal uptake to nuclear delivery. Cellular and molecular life sciences : CMLS 62, 2739-2749.
    Nakai, K., and Horton, P. (1999). PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends in biochemical sciences 24, 34-36.
    Nakase, I., Tadokoro, A., Kawabata, N., Takeuchi, T., Katoh, H., Hiramoto, K., Negishi, M., Nomizu, M., Sugiura, Y., and Futaki, S. (2007). Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. Biochemistry 46, 492-501.
    Nugent, G. D., Coyne, S., Nguyen, T. T., Kavanagh, T. A., and Dix, P. J. (2006). Nuclear and plastid transformation of Brassica oleracea var. botrytis (cauliflower) using PEG-mediated uptake of DNA into protoplasts. Plant Science 170, 135-142.
    Obembe, O. O., Popoola, J. O., Leelavathi, S., and Reddy, S. V. (2011). Advances in plant molecular farming. Biotechnology advances 29, 210-222.
    Okumura, S., Sawada, M., Park, Y. W., Hayashi, T., Shimamura, M., Takase, H., and Tomizawa, K. (2006). Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic research 15, 637-646.
    Qi, X., Droste, T., and Kao, C. C. (2011). Cell-penetrating peptides derived from viral capsid proteins. Molecular plant-microbe interactions : MPMI 24, 25-36.
    Ruf, S., Hermann, M., Berger, I. J., Carrer, H., and Bock, R. (2001). Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nature biotechnology 19, 870-875.
    Ruhlman, T., Verma, D., Samson, N., and Daniell, H. (2010). The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant physiology 152, 2088-2104.
    Shi, L. X., and Theg, S. M. (2013). The chloroplast protein import system:
    56
    from algae to trees. Biochimica et biophysica acta 1833, 314-331.
    Shokolenko, I. N., Alexeyev, M. F., LeDoux, S. P., and Wilson, G. L. (2005). TAT-mediated protein transduction and targeted delivery of fusion proteins into mitochondria of breast cancer cells. DNA repair 4, 511-518.
    Singh, A. K., Verma, S. S., and Bansal, K. C. (2010). Plastid transformation in eggplant (Solanum melongena L.). Transgenic research 19, 113-119.
    Skarjinskaia, M., Svab, Z., and Maliga, P. (2003). Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgenic research 12, 115-122.
    Small, I., Peeters, N., Legeai, F., and Lurin, C. (2004). Predotar: A tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4, 1581-1590.
    Svab, Z., Harper, E. C., Jones, J. D., and Maliga, P. (1990). Aminoglycoside-3'-adenyltransferase confers resistance to spectinomycin and streptomycin in Nicotiana tabacum. Plant molecular biology 14, 197-205.
    Unnamalai, N., Kang, B. G., and Lee, W. S. (2004). Cationic oligopeptide-mediated delivery of dsRNA for post-transcriptional gene silencing in plant cells. FEBS letters 566, 307-310.
    Wei, Z., Liu, Y., Lin, C., Wang, Y., Cai, Q., Dong, Y., and Xing, S. (2011). Transformation of alfalfa chloroplasts and expression of green fluorescent protein in a forage crop. Biotechnology letters 33, 2487-2494.
    Williams, C. L. (2003). The polybasic region of Ras and Rho family small GTPases: a regulator of protein interactions and membrane association and a site of nuclear localization signal sequences. Cellular signalling 15, 1071-1080.
    Zhang, X. P., and Glaser, E. (2002). Interaction of plant mitochondrial and chloroplast signal peptides with the Hsp70 molecular chaperone. Trends in plant science 7, 14-21.
    Ziemienowicz, A., Shim, Y. S., Matsuoka, A., Eudes, F., and Kovalchuk, I. (2012). A novel method of transgene delivery into triticale plants using the Agrobacterium transferred DNA-derived nano-complex. Plant physiology 158, 1503-1513.
    57
    Zybailov, B., Rutschow, H., Friso, G., Rudella, A., Emanuelsson, O., Sun, Q., and van Wijk, K. J. (2008). Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PloS one 3, e1994.
    Sporlein, B., Streubel, M., Dahlfeld, G., Westhoff, P., and Koop, H.U. (1991). PEG-mediated plastid transformation: A new system for transient gene expression assays in chloroplasts. Theor. Appl. Genet. 82: 717-722.
    Golds, T., Maliga, P., and Koop, H.U. (1993). Stable plastid transformation in PEG-treated protoplasts of Nicotiana tabacum. Nat. Biotechnol. 11: 95-97.
    Sikdar, S.R., Serino, G., Chaudhuri, S., and Maliga, P. (1998). Plastid transformation in Arabidopsis thaliana. Plant Cell Rep. 18: 20-24.
    呂詩偉. (2008). 發展高表現量的家禽里奧病毒之植物性疫苗. 國立成功大學生物科技所碩士論文.
    黃品升. (2007). 利用植物熱休克蛋白HSP101來提升外源蛋白質轉譯能力之研究.
    陳世殷. (2012). 水稻葉綠體基因轉殖的研究. 國立成功大學生物科技所碩士論文.

    下載圖示 校內:2019-01-29公開
    校外:2019-01-29公開
    QR CODE