| 研究生: |
顏國恩 Yen, Kuo-En |
|---|---|
| 論文名稱: |
紫外線輔助熱處理時間對多孔隙介電材料的薄膜與機械性質之影響 Effects of UV-Curing Time on the Thin-Film and Mechanical Properties of Porous Dielectrics |
| 指導教授: |
楊天祥
Yang, Tian-Shiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系碩士在職專班 Department of Mechanical Engineering (on the job class) |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 紫外線輔助熱處理製程 |
| 外文關鍵詞: | UV curing, UVTP |
| 相關次數: | 點閱:60 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
積體電路元件尺寸的微縮化導致內層連線的時間延遲比整個元件的時間延遲更加嚴重,因此我們必須採用低介電常數材料(低電容)及銅導線(低阻值)來降低時間延遲效應的問題。然而,將低介電材料整合至積體電路製程時,由於低介電材料與相鄰材料間的熱膨脹係數不相等之故,將引發元件內部的殘留應力,且殘留應力隨著熱膨脹係數差異及導線層數之增加而增加。同時,因低介電材料多為組織鬆散、機械強度不理想的結構,在製程整合及封裝製程中的外力可輕易跨越介電材料之降伏強度,導致積體電路元件的破壞。因此,足夠之機械降伏強度乃低介電材料之基本特性要求。
紫外線熱處理為目前用來改善多孔隙低介電材料結構和機械性質之新觀念製程;而本論文主要目的為探討奈米積體電路製程中之SiOCH(碳氫化矽)低介電常數薄膜之紫外線熱處理時間對其薄膜和機械性質的影響,以使薄膜技術在製程整合應用上有最佳化的參數。具體而言,我們利用電漿輔助化學氣相沈積法,在矽基材上沈積多孔隙SiOCH薄膜,並且針對紫外線熱處理時間長短對薄膜的材料結構、薄膜性質、介電性質和機械性質之影響進行研究。在技術上,我們利用Fourier紅外線光譜分析SiOCH薄膜經紫外線熱處理後的鍵結型態,以金屬絕緣體半導體結構分析其介電性質,並利用Stoney方程式以曲率方式求鍍膜殘留應力。結果顯示,隨著紫外線熱處理時間的增加, (CHx / Si-O)的波峰比與 (Si-CH3 / Si-O) 的波峰比逐漸減少,反映出SiOCH薄膜材料在結構上之改變。在薄膜性質方面,隨著紫外線熱處理時間的增加,SiOCH薄膜之孔隙度與孔洞大小亦隨之增加。在介電性質方面,我們發現適當的紫外線熱處理時間可以使薄膜介電常數急速降低,而過長的紫外線熱處理時間將導致薄膜介電常數的上升。而在機械性質方面,我們發現隨著紫外線熱處理時間的增加,薄膜殘留應力、硬度也隨之增加。本文研究結果可提供紫外線輔助熱處理時間控制之參考,以得到適當的薄膜硬度和應力。
Two materials are used to solve the RC delay issue in the multi-layer conducting line of integrated circuit (IC) devices. One is low-k dielectric material (for its low capacity), and the other is copper contact line (for its low resistitivity). However, as there will be residue stress due to the thermal expansion coefficient difference between the low-k dielectric and its adjacent material. Furthermore, as the low-k dielectric material generally has a loose structure, and hence a low mechanical yield strength, the IC device would be easily destroyed during subsequent processing or packaging.
To alleviate the aforementioned problems, the brand new idea of ultraviolet (UV) curing process can be used for the processing of porous low-k dielectric materials. In this thesis, we discuss the effects of the UV curing time on the thin-film and mechanical properties of the low-k dielectric material SiOCH, which is typically used in nano-IC manufacturing. One of the major goals of this work is to systematically investigate the UV curing process applied on the SiOCH film, and to deduce optimized process parameters of the thin film processing. Specifically, the porous SiOCH thin film is deposited on a silicon substrate by a plasma enhanced chemical vapor deposition (PECVD) system. The bonding structure of the SiOCH film then is characterized by Fourier transform infrared spectropy (FTIR). The dielectric constant and current leakage are examined by the metal-insulator-semiconductor (MIS) structure. The residual stress is calculated by the Stoney’s equation. The FTIR results show that the peak ratios of CHx/Si-O and Si-CH3/Si-O decrease with increasing UV curing time. Also, the size of the porous structure increases with the time of the UV curing process. The residual stress and hardness of the film increase with the the UV curing time as well. It is also found that the dielectric constant decreases drastically with the the UV curing time at first, but then increases for longer curing time. The findings of this work can be used to determine the optimal UV curing time that produces the best compromise between thin film hardness and residual stress.
[1] S.P. Murarka,”Low Dielectric Constant Materials for Interlayer Dielectric
Applications”, Solid State Technology,39 (3), 83 (1996).
[2] C. Bruynseraede, D. Chiaradia, H. Wang, K. Maex, “EM-induced mass
transport at the Cu/barrier interface: a new test structure for rapid
assessment at user conditions”, IEEE IITC Proc., 21 (2003).
[3] K.-N.Tu, J.W. Mayer, L.C. Feldman, ”Electronic Thin Film Science”,1992.
[4] E. Ogawa et al, IRPS 2002.
[5] R. H. Havemann, “Overview of Process Integration Issue for Low k
Dielectrics”, Mat. Res. Soc. Symp. Proc. 511, 3 (1998).
[6] M..Bohr, “Interconnect Scaling- The Real Limiter to High Performance
ULSI”, IEEE IEDM Proc., 241 (1995).
[7] M. Naik, S. Parikh, P. Li, J. Educato, D. Cheung, I. Hashim, P. Hey, S.
Jenq, T. Pan, F. Redeker, V. Rana, B. Tang, and D. Yost, Proc. of the Int.
Interconnect Tech. Conf. (IITC), San Francisco,CA, 1999, p. 181.
[8] R. D. Miller et al., Matter. Res. Soc. Symp. Proc.vol. 565, 3 (1999).
[9] T. Aoki, Y. Shimizu, and T. Kikkawa, Matter. Res.Soc. Symp. Proc., vol.
565, 41 (1999).
[10] Teruhiko Kumada, Atsuko Sasahara, Norihisa Matsumoto, Naoki Yasuda,
Hideharu Nobutoki, Toshiyuki Toyoshima and Shigeru Matsuno,”Novel Ultra
Low-k Borazinic Films Prepared by PECVD”, Advanced Technology R&D
Center, Mitsubishi Electric Corporation,8-1-1 Tsukaguchi-Honmachi,
Amagasaki, Hyogo 661-8661, p2,(2004).
[11] VINEET DHARMADHIKARI, “UV-assisted processing for advanced
dielectric films”.
[12] V. Jousseaume, A. Zenasni, L. Favennec, G. Gerbaud, M. Bardet, J. P.
Simon, and A. Humbert, “Comparison Between E-beam and UltravioletCuring to Perform Porous a-SiOC:H”, Journal of The Electrochemical
Society, 154 (5) G103-G109(2007).
[13] S.R. Wilson et al., “Handbook of Multilevel Metallization for Integrated
Circuits”, Noyes Publications, Park Ridge, NJ, 1993, chap.1, pp17.
[14] 許益祥, “ 時序導向之通道繞線串音效應最小化方法”, 中原大學電子
工程學系碩士論文, p.16-17, 2002.
[15] Z. C. Wu, “Physical and Electrical Characteristics of F- and C-Doped
Low Dielectric Constant Chemical Vapor Deposited Oxides”, J. Electrochem.
Soc. 148, F115 (2001).
[16] S. M. Han and E. S. Aydil, “Reasons for lower dielectric constant of
fluorinated SiO2 films”, J. Appl. Phys., 83, 2172 (1998).
[17] W. Chang, S. M. Jang, C. H. Yu, S. C. Sun, and M. S. Liang, “A
manufacturable and reliable low-k inter-metal dielectric using fluorinated
oxide (FSG)”, IEEE IITC Proc., 131 (1999).
[18] A. Grill, “Plasma enhanced chemical vapor deposited SiCOH dielectrics:
from low-k to extreme low-k interconnect materials”, J. Appl. Phys. 93,1785
(2003).
[19] G. Y. Lee, D. C. Edelstein, R. Conti, W. Cote, K. S. Low, D.
Dobuzinsky,G. Feng, K. Dev, P. Wrschka, P. Shafer, R. Ramachandran, A.
Simpson, E.Liniger, E. Simonyi, T. Dalton, T. Spooner, C. Jahnes, E.
Kaltalioglu, and A. Grill, Advanced Metallization Conference, San Diego, CA,
3–5 October, 2000.
[20] Shiu-Ko JangJian,”Investigation and Characterization of Fluorine
Modified Organosilicate Glass for Low Dielectric Constant Material
Application in Ultra-Large Scale Integrated Circuit”, NCKU, June 2004.
[21] L. Peters, “Solving the integration challenges of low-k dielectrics”,
Semiconductor International, November (1999) 56-64.
[22] J. C. Maisonobe, G. Passemard, C. Lacour, P. Motte, P. Noel, J. Torres,“SILK Compatibility with IMD Process Using Copper Metallization”,
Microelectronics Engineering 50, 25 (2000).
[23] Z. C. Wu, Z. W. Shiung, R. G. Wu, Y. L. Liu, W. H. Wu, B. Y. Tsui, M.
C.Chen, W. Chang, P. F. Chou, S. M. Jang, C. H. Yu, and M. S. Liang,
“Dielectric and Barrier Properties of Spin-On Organic Aromatic Low
Dielectric Constant Polymers FLARE and SiLK”, J. Electrochem. Soc. 148,
F109 (2001).
[24] W. S. Yoo, R. Swope, and D. Mordo, “Plasma Enhanced Chemical Vapor
Deposition and Characterization of Fluorine Doped SiliconDioxide Films”,
Jpn. J. Appl. Phys. 36, 267 (1997).
[25] R. Swope, W. S. Yoo, J. Hsieh, H. Nijenhuis, S. Schuchmann, F. Nagy,
and D. Mordo, in Proceedings of Dielectrics for ULSI Multilevel
Interconnection (1996).
[26] B. PANG, W. F. YAU, P. LEE, and M. NAIK, “A New CVD Process For
Damascene Low k Appli-cations”, Semiconductor FABTECH 10th Edition,
285(1999).
[27] S. McClatchie, K. Beekmann, and A. Kiermasz, 4th. Intl. Dielectrics for
ULSI Multilevel Interconnect Conf. (DUMIC), 1998, p. 311.
[28] B. K. Hwang, M. J. Loboda, G. A. Cerny, R. F. Schneider, J. A. Seifferly,
and T. Washer, Proc. Of the Int. Interconnect Tech. Conf. (IITC), San
Francisco, CA, 2000, p. 52.
[29] T. Aoki, Y. Shimizu, and T. Kikkawa, Matter. Res. Soc. Symp. Proc., vol.
565, 41 (1999).
[30] V. Jousseaume , L. Favennec , A. Zenasni , O. Gourhant, “Porous ultra
low k deposited by PECVD: From deposition to material properties”, Surface
& Coatings Technology 201 (2007) 9248–9251.
[31] J.B. VELLA, I.S. ADHIHETTY, K. JUNKER and A.A. VOLINSKY
International Journal of Fracture, 119/120, 487, 2003.[32] Chun-Yi Chang,”Interface Structures and Mechanical Properties of
Porous SiOCH Low Dielectric Constant Films”, NTHU,June 2006.
[33] Y.L. Cheng , Y.L. Wang , J.K. Lan , G.J. Hwang , M.L. O’Neil , C.F.
Chen,”Heat, moisture and chemical resistance on low dielectric constant
(low-k) film using Diethoxymethylsilane (DEMS) prepared by plasma
enhanced chemical vapor deposition”, Surface & Coatings Technology 200
(2006) 3127 – 3133.
[34] Q. Wu, K.K. Gleason, J. Vac. Sci. Technol., A, Vac. Surf. Films 21 (2003)
388.
[35] P. Gonon, A. sylvestre, H. Meynen, L.V. Cotthem, J. Electrochem. Soc.
150 (2003) F47.
[36] D.J. Thomas, Y.P. Song, K. Powell, Solid State Technol. 15 (2001) 107.
[37] 楊金成、柯富祥、孫旭昌、戴寶通,TDAPIMS 晶圓表面分析系統介
紹,毫微米通訊。
[38] April D. Ross, Kelvin Chan, Thomas B. Casserly, Ken K.S. Lau, Leslie S.
Loo, Qingguo Wu and Prof. Karen K. Gleason,”Ultra Low Dielectrics by
Chemical Vapor Deposition (CVD): from Porosity to Air Gaps”, Department
of Chemical Engineering Massachusetts Institute of Technology.
[39] ST, Philips and Freescale, IITC 2005, p 85.
[40] V. Jousseaume, A. Zenasni, L. Favennec, G. Gerbaud, M. Bardet, J. P.
Simon, and A. Humbert,”Comparison Between E-beam and Ultraviolet
Curing to Perform Porous a-SiOC:H”, Journal of The Electrochemical
Society, 154 5 G103-G109 2007.
[41] D.Menzel, “Recent developments in electron and photon stimulated
desorption”, J.Vac. Sci. Technol, A20,538(1982).
[42] M.L. Knotek, “Stimulated desorption from surfaces”, Phys. Today
37,24(1984).
[43] P.A. Redhead, “Interaction of slow Electron chemisorbOxygen”,Can.J.Phys.42,886(1964).
[44] B. Chapman, Glow Discharge Process, (John Wiley and Sons, New York,
1980).
[45] W. C. Oliver, G. M. Pharr, J. Mater. Res., 7, 1564 (1992).
[46] K. Jia, T.E. Fischer and B. Gallois, “Microstructure, hardness and
toughness of nanostructured and conventional WC-Co composites”,
Nanostruct.Mater.,10, 875(1998).
[47] W.O. George, H. A. Willis, Computer method in UV, visible, and IR
spectroscopy, Cambridge, UK:Royal Society of Chemistry(1990).
[48] E. Pelletier, Handbook of Optical Constants of Solids, E. D. Palik,
Editor,(Academic,NY,1991).
[49] G.C.Schwartz, K. V. Srikrishnan, A. Bross, Handbook of Semiconductor
Interconnection Technology, p. 87, New York:Marcel Dekker,1998.
[50] David W. Gidley and William E. Frieze & Yifan Hu, Jianing Sun and
Albert F. Yee, “Probing porous low-K dielectric thin films using
depth-profiled Positronium Annihilation Lifetime Spectroscopy”, Research
funded by SEMATECH, National Science Foundation and the University of
Michigan.
[51] H.G. Peng, R.S. Vallery, D.W. Gidley,W.E. Frieze, and R. Carter, ”Using
PALS to Address Integration Challenges at ≤ 45 nm Node”,Physics
Department, University of Michigan, Ann Arbor, MI 48109;LSI Logic
Corporation, Gresham, Oregon, USA.
[52] C. Rau and W. Kulisch, “Mechanisms of plasma polymerization of
various silico-organic monomers”, Thin Solid Films 249, 28 (1994).
[53] H. G. Pryce Lewis, D. J. Edell, and K. K. Gleason, “Pulsed-PECVD
Films from Hexamethylcyclotrisiloxane for Use as Insulating Biomaterials”,
Chem. Mater. 12, 3488 (2000).
[54] H. G. Pryce Lewis, T. B. Casserly, and K. K. Gleason, “Hot-FilamentChemical Vapor Deposition of Organosilicon Thin Films from
Hexamethylcyclotrisiloxane and Octamethylcyclotetrasiloxane”, J.
Electrochem. Soc. 148, F212 (2001).
[55] T. R. Crompton, The Chemistry of Organic Silicon Compounds, edited
by S. Patai and Z. Rappoport (Wiley, New York, 1989).
[56] D. C. McKean and I. Torto, “Infrared studies of SiH bonds and the
structures of methylsilylamines and ethers”, Spectrochim. Acta, Part A 49,
1095 (1993).
[57] G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, and W. Czubatyj,
“Oxygen-bonding environments in glow-discharge-deposited amorphous
silicon-hydrogen alloy films”, Phys. Rev. B 28, 3225 (1983).
[58] M. J. Loboda, C. M. Grove, and R. F. Schneider, “Properties of
a-SiOx:H thin films deposited from hydrogen silsesquioxane resins”, J.
Electrochem. Soc. 145, 2861 (1998).
[59] M. G. Albrecht and C. Blanchette, “Materials issues with thin film
hydrogen silsesquioxane low K dielectrics”, J. Electrochem. Soc. 145, 4019
(1998).
[60] P. Bornhauser and G. Calzaferri, “Normal coordinate analysis of
H8Si8O12”, Spectrochim. Acta, Part A 46, 1045 (1990).
[61] P. Bornhauser and G. Calzaferri, “Ring-Opening Vibrations of
Spherosiloxanes”, J. Phys. Chem., 100, 2035 (1996).
[62] C. Marcolli and G. Calzaferri, “Vibrational Structure of Monosubstituted
Octahydrosilasesquioxanes”, J. Phys. Chem., 101, 4925(1997).
[63] J. A. Theil, J. G. Brace, and R. W. Knoll, “Carbon content of silicon
oxide films deposited by room temperature plasma enhanced chemical vapor
deposition of hexamethyldisiloxane and oxygen”, J. Vac. Sci. Technol. A 12,
1365 (1994).
[64] A. M. Wrobel, M. Kryszewski, and M. Gazicki, J. Macromol. Sci., Chem.A 20, 583 (1983).
[65] Aldrich Library of FTIR spectra, edited by C. J. Pouchert, 1985.
[66] R. Zink and K. Hassler, “CMe3SiX3 and SiMe3SiX3 (X=H, F, Cl, Br, I): a
combined ab initio and vibrational spectroscopic study”, Spectrochim. Acta,
Part A 55, 333 (1999).
[67] W. C. Liu, C. C. Yang, W. C. Chen, B. T. Dai, and M. S. Tsai, “The
structural transformation and properties of spin-on poly(silsesquioxane) films
by thermal curing”, J. Non-Cryst. Solids 311, 233 (2002).
[68] L. H. Lee, W. C. Chen, and W.C. Liu, “Structural control of oligomeric
methyl silsesquioxane precursors and their thin-film properties”, J. Polym.
Sci., Part A: Polym. Chem. 40 A, 1560 (2002).
[69] V. Pankov, J. C. Alonso, and A. Ortiz, “Analysis of structural changes in
plasma-deposited fluorinated silicon dioxide films caused by fluorine
incorporation using ring-statistics based mechanism”, J. Appl. Phys., 86, 275
(1999).
[70] G. Lucovsky, M. J. Manitini, J. K. Srivastava, and E. A. Irene,
“Low-temperature growth of silicon dioxide films: A study of chemical
bonding by ellipsometry and infrared spectroscopy”, J. Vac. Sci. Technol. B 5,
530 (1987).
[71] Y. H. Kim, M. S. Hwang, H. J. Kim, J. Y. Kim, and Y. Lee, “Infrared
spectroscopy study of low-dielectric-constant fluorine-incorporated and
carbon-incorporated silicon oxide films”, J. Appl. Phys. 90, 3367 (2001).
[72] N. Wright and M. J. Hunter, “Organosilicon Polymers Infrared Spectra
of The Methylpolysilicon”, J. Am. Chem. Soc. 69, 803 (1947).
[73] R. E. Richards and H. W. Thompson, “Infrared Spectra of Compounds of
High Molecular Weight. Part IV. Silicones and Related Compounds”, J. Chem.
Soc. 124 (1949).
[74] Galeener, F.L. Phys. Rev. B, 19, 4292(1979).[75] Almeida, R.M. and Pantano, C.G.,J. Appl. Phys., 68,4225(1990).
[76] P. G. Pai. S. S. Chao, Y. Takagi, and G. Lucovsky, “Infrared
spectroscopic study of SiOx films produced by plasma enhanced chemical
vapor deposition”, J. Vac. Sci. Technol. A 4, 689 (1986).
[77] J. S. Chou and S. C. Lee, “Effect of porosity on infrared-absorption
spectra of silicon dioxide”, J. Appl. Phys., 77, 1805 (1995).
[78] A. Grill and V. Patel, “Ultralow-k dielectrics prepared by
plasma-enhanced chemical vapor deposition”, Appl. Phys. Lett., 79, 803
(2001).
[79] S.Habermehi, “Stress relaxation in Si-rich silicon nitride thin films”,
J.Appl.Phys.,83, 4672(1998).
[80] L. M. Han, J. S. Pan, S. M. Chen, N. Balasubramanian, J. Shi, L. S.
Wong, and P. D. Foo, “Characterization of Carbon-Doped SiO2 Low k Thin
Films Preparation by Plasma-Enhanced Chemical Vapor Deposition from
Tetramethylsilane”, J. Electrochem. Soc., 148, F148(2001).
[81] P. Hesto, in: G. Barvotlin, A. Vapaille (Eds.), Instabilities in Silicon
Devices, Ch. 5, vol. 1, pp.263, North-Holland, Amsterdam (1986).
[82] H. S. Choi, T. Lee, J. Kim, K. H. Hong, K. H. Kim, J. Shin, H. J. Shin, H.
D, Jung, and S. H. Choi, “Prediction of Young’s Moduli of Low Dielectric
Constant Materials”, Mater. Res. Soc. Symp. Proc. Vol.891, EE07-08.1
(2006).
[83] G. Xu, J. He, E. Andideh, J. Bielefeld, T. Scherban, “Cohesive Strength
Characterization of Brittle Low-k Films,” Proc. IITC, p. 57, 2002.