簡易檢索 / 詳目顯示

研究生: 陳維致
Chen, Wei-Chih
論文名稱: 區域熔融及選擇性雷射熔融製程之凝固過程與微組織數值模擬研究
Numerical Simulation of Solidification and microstructure for Zone-melting and Selective Laser Melting Process
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 76
中文關鍵詞: 區域熔融法選擇性雷射熔融法數值模擬微組織
外文關鍵詞: Zone-melting, Selective Laser Melting, Numerical simulation, Microstructure
相關次數: 點閱:171下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於工業發展快速,製程日新月異,若要由傳統Trial and Error方式進行製程參數改良得到所需之產品品質將耗費許多成本與人力,而產品之品質通常與其微組織有一定之關係,故本研究便採用電腦數值模擬技術去進行兩個製程之微組織模擬,分別為熱電材料之區域熔融製程與Ti-6Al-4V之選擇性雷射熔融製程。本研究分別建立兩製程之溫度場模組,經驗證後將得到之溫度場結果帶入微組織模組中模擬相對應製程之微組織,並且與實際相對應製程之產品微組織做比對、驗證。
    在區域熔融部分利用與實際實驗結果之驗證找出碲化鉍之晶粒成核成長參數,並利用此參數對相關製程參數進行微組織之模擬,發現加熱環數目拆成兩個或加熱環移動度先慢後快時,晶粒會有變大之趨勢,使熱電材料之Power Factor變好。且發現長晶凝固界面與晶粒大小、柱狀晶形貌有關。當凝固界面較穩定時(平或凸面)晶粒大小會較大且有較易形成柱狀晶之趨勢。在選擇性雷射熔融部分,建立單點雷射熔融微組織模型,將模擬結果與實驗驗證找出本研究材料之晶體成核成長參數,以利進行後續之塊材與粉體之模擬。

    In this study, a numerical model has been developed to simulate the variation/distribution of temperature and the subsequent microstructure of Bi2Te3 fabricated by zone-melting technique and Ti-6Al-4V fabricated by Selective Laser Melting technique.
    In zone-melting part, an experiment is conducted to measure the temperature variation/distribution during the zone-melting process to validate the numerical system. The temperature variation/distribution measured by experiment is compared to the results of numerical simulation. The results show that our model and the experiment are well matched. Then the model is used to evaluate the crystal formation for Bi2Te3 of 30mm diameter process with different processing parameters. In the end, we use this model to predict the crystal formation of zone-melting process for Bi2Te3 with a 45 mm diameter. The results show that it is difficult to grow columnar crystal when the diameter comes to 45 mm.
    In Ti-6Al-4V manufactured by Selective Laser Melting process part, a simplified model of single point laser heat source is established to ignore the Gaussian distribution effect of moving laser heat source. And the subsequent microstructure result of simulation is compared to the experimental results to acquire the simulation parameters of crystal growth.

    目錄 中文摘要 I Extended abstract II 目錄 XII 表目錄 XV 圖目錄 XVI 第一章 前言 1 第二章 文獻回顧 3 2-1 熱電材料之區域熔融(Zone-melting)製程 3 2-1-1 熱電現象 3 2-1-2 影響熱電材料轉換效率之因素 4 2-1-2-1 熱電力(Seebeck Coefficient or Thermopower) 4 2-1-2-2 熱導度(Thermal Conductivity) 7 2-1-2-3 電阻率(Resistivity) 9 2-1-3 熱電材料的種類 11 2-1-4 提升熱電材料性質之方法 14 2-1-5 熱電材料之製程 15 2-1-6 研究目的 16 2-2 Ti-6Al-4V之選擇性雷射熔融製程 19 2-2-1 鈦合金簡介 19 2-2-2 Ti-6Al-4V合金簡介 21 2-2-3 選擇性雷射熔融(Selective Laser Melting)製程簡介 21 2-2-4 研究目的 23 第三章 數值方法及理論基礎 30 3-1 熱傳模組 30 3-2 長晶模組CAFÉ 32 3-2-1 成核模式 34 3-2-2 成長模式 36 第四章 實驗方法與步驟 40 4-1 區域熔融製程 40 4-1-1 數值模擬 40 4-1-2 實驗驗證 41 4-2 選擇性雷射熔融製程 42 4-2-1 數值模擬 42 4-2-2 實驗驗證 43 第五章 結果與討論 49 5-1 區域熔融製程 49 5-1-1 30φ碲化鉍之溫度場驗證 49 5-1-2 30φ碲化鉍之微組織驗證 50 5-1-3 微組織形貌之探討 51 5-1-4 不同製程參數對微組織之影響(加熱環數目、加熱環移動速度) 52 5-1-5 45 mm之製程預測 53 5-2 選擇性雷射熔融製程 54 第六章 結論 71 參考文獻 72

    參考文獻
    [1] W. D. Callister, D. G. Rethwisch., “Materials Science and Engineering: An Introduction, 8th Edition”, United State: Wiley, John & Sons, Incorporated, 2010
    [2] W. F. smith, ”Principles of Materials Science and Engineering(Mcgraw Hill Series in Materials Science and Engineering), 3 Sub Edition” , United State: Mcgraw-Hill College, 1995
    [3] J. M. Po, M. C. Brito, J. M. Alves, J. A. Silva, J. M. Serra, and A. M. Vallera, “Measurement of the Dopant Concentration in a Semiconductor Using the Seebeck Effect”, Measurement Science and Technology, Vol. 24, 2013
    [4] D. M. Rowe, “CRC Handbook of Thermoelectrics”, CRC Press, 1995
    [5] 陳文進,“錫鉛銲料(Sn63Pb37)與無鉛銲料(Sn95.5Ag4Cu0.5)對熱電模組接點電性影響之研究”, 碩士論文, 國立清華大學材料所, 2006.
    [6] 況學成、寧小榮,“熱電材料的研究現狀及發展趨勢”, Foshan Ceramics, Vol. 18, 2008, pp. 34-40
    [7] H. J. Goldsmid and R. W. Douglas, “The Use of Semiconductors in Thermoelectric Refrigeration”, British Journal of Applied Physics, Vol. 5, 1954, pp. 386-390.
    [8] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. P. Fleurial and P. Gogna, “New Directions for Low-dimensional Thermoelectric Materials”, Advanced Materials, Vol. 19, 2007, pp. 1043-1053.
    [9] G. D. Mahan and M. Bartkowiak, “Wiedemann-Franz Law at Boundaries”, Applied Physics Letters, Vol. 74, 1999, pp. 953-954.
    [10] T. Caillat, L. Gailliard, D. Scherrer and S. Scherrer, “Transport Properties Analysis of Single Crystals (BixSb1-x)2Te3 Grown by the Traveling Heater Method”, Journal of Physics and Chemistry of Solids, Vol. 54, 1993, pp. 575-581
    [11] Roufosse MC, Klemens PG. Lattice thermal-conductivity of minerals at high-temperatures. Journal of Geophysical Research, vol.79, 1974, p. 703
    [12] G. A. Slac “Nonmetallic crystals with high thermal conductivity” Journal of Physics and Chemistry of Solids, Vol. 34, 1973, pp 321–335
    [13] Z. Guo, S. Maruyama and S. Togawa, “Combined Heat Transfer in Floating Zone Growth of Large Silicon Crystals with Radiation on Diffuse and Specular Surfaces”, Journal of Crystal Growth, Vol. 194, 1998, pp. 321-330.
    [14] D. M. Rowe,“Thermoelectrics Handbook:Micro to Nano”, CRC Press, 2006.
    [15] W. M. Yim and F. D. Rosi, “Compound Tellurides and Their Alloys for Peltier Cooling – A Review”, Solid-State Electronics, Vol. 15, 1972, pp. 1121-1140.
    [16] J. Seo, L. Park, D. Lee and C. Lee, “Thermoelectric Properties of Hot-pressed N-type Bi2Te2.85Se0.15 Compounds”, Journal of Materials Science, Vol.35, 2000, pp.1549-1554.
    [17] 況學成、寧小榮,“熱電材料的研究現狀及發展趨勢”, Foshan Ceramics, Vol. 18, 2008, pp. 34-40.
    [18] T. S. Oh, J. S. Choi and D. B. Hyun, “Formation of PbTe Intermetallic Compound by Mechanical Alloying of Elemental Pb and Te Power”, Scripta Metallurgica et Materialia, Vol. 32, 1995, pp. 595-600.
    [19] 楊磊、吳建生、張瀾庭,“具有低熱導率的Skutterudite類新型熱電材料”, 材料報導, Vol. 17, 2003, pp. 14-16.
    [20] H. Huang and P. G. McCormick, “Effect of Milling Condition on the Synthesis of Chromium Carbides by Mechanical Alloying”, Journal of Alloys and Compounds, Vol. 256, 1997, pp. 258-262
    [21] T. Caillat, J. Kulleck, A. Borshchevsky and J. P. Fleurial, “Preparation and Thermoelectric Properties of the Skutterudite-related Phase Ru0.5Pb0.5Sb3”, Journal of Applied Physics, Vol. 79, 1996, pp. 8419-8427.
    [22] V. B. Yurchenko, “Effective Figure of Merit Increase at the Large Temperature Drop”, 15th International Conference on Thermoelectrics, 1996, pp. 194-196
    [23] D. P. Snowden, D. T. Allen, B. A. Cook and N. B. Elsner, “High Temperature Segmenting for Increased Specific Output”, 18th International Conference on Thermoelectrics, 1999, pp. 230-233.
    [24] T. Kajikawa, K. Shida, S. Sugihara and M. Ohmori, “Thermoelectric Properties of Magnesium Silicide Processed Powered Elements Plasma Activated Sintering Method”, 16th International Conference on Thermoelectrics, 1997, pp. 275-278.
    [25] G. D. Mahan and M. Bartkowiak, “Wiedemann-Franz Law at Boundaries”, Applied Physics Letters, Vol. 74, 1999, pp. 953-954.
    [26] T. Caillat, M. Carle, D. Perrin, H. Scherrer and S. Scherrer, “Study of the Bi-Sb-Te Ternary Phase Diagram”, Journal of Physics and Chemistry of Solids, Vol. 53, 1992, pp.227-232.
    [27] A. Aivazov, A. I. Anukhin and I. S. Gavrilenko, “Zone Melting Characteristics of Complex Semiconductors”, Inorganic Materials, Vol. 27, 1991, pp. 780-784.
    [28] H. P. Ha, Y. J. Oh and D. B. Hyun, “Thermoelectric Properties of n-type Bismuth Telluride Based Alloys Prepared by Hot Pressing and Zone Melting Method”, International Journal of the Society of Materials Engineering for Resources, Vol. 10, No. 2, 2002, pp. 130-134.
    [29] G. Kavei and M. A. Karami, “Fabrication and Characterization of the p-type (Bi2Te3)x(Sb2Te3)1-x Thermoelectric Crystals Prepared via Zone Melting”, Indian Academy of Sciences, Vol. 29, No. 7, 2006, pp. 659–663.
    [30] H. J. Goldsmid, “Thermoelectric Refrigeration”, Pion Ltd., London, 1986.
    [31] G. L. Bennett, “Historical Overview of the U.S. Use of Space Nuclear Power”, Space Power, Vol. 8, 1989, pp.259-265.
    [32] A. W. Crook, “Profiting from Low-grade Heat:Thermodynamic Cycles for Low-temperature Heat”, Institution of Electrical Engineers, 1994, pp.121-122.
    [33] D. M. Rowe, “Possible Offshore Application of Thermoelectric Conversion”, The Marine Technology Society Journal, Vol. 27, 1994, pp.43-50.
    [34] H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang and S. C. Zhang, “Topological Insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a Single Dirac Cone on the Surface”, Nature Physics, Vol. 5, 2009, pp. 438-442.
    [35] C. Leyens, M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, United State:Wiley-VCH Verlag GmbH & Co. KgaA, 2003
    [36] M. J. Donachie,” Titanium: A Technical Guide, 2nd Edition”, United State: ASM International, 2000
    [37] I. Perissi, U. Bardi, S. Caporali, A. Lavacchi,” High temperature corrosion properties of ionic liquids”, Corrosion Science, vol. 48, 2006, pp.2349-2362
    [38] Z. Fan, T. E. Sparks, F. Liou, A. Jambunathan, Y. Bao, J. Ruan and J. W. Newkirk, “Numerical Simulation of the Evolution of Solidification Microstructure in Laser Deposition”, Properties of Metals and Alloys Fabrication Metallurgy, 2007
    [39] L. Q. Chen, “Phase-Field Models for Microstructure Evolution”, Annual Review of Materials Research, Vol. 32, 2002
    [40] R. Siegel and J. R. Howell, ”Thermal Radiation Heat Transfer, 3rd Edition”, Hemisphere Publishing Corporation, 1992, pp. 263-311.
    [41] M. Rappaz and C. A. Gandin, “Probabilistic Modeling of Microstructure Formation in Solidification Processes”, Acta Metallurgica et Materialia, Vol. 41, No. 2, 1993, pp. 345-360.
    [42] C. A. Gandin and M. Rappaz, “A Coupled Finite Element – Cellular Automaton Model for the Prediction of Dendritic Grain Structures in Solidification Processes”, Acta Metallurgica et Materialia, Vol. 42, No. 7, 1994, pp. 2233-2246.
    [43] C. A. Gandin, J. L. Desbiolles, M. Rappaz and P. Thevoz, “A Three-Dimensional Cellular Automaton-Finite Element Model for the Prediction of Solidification Grain Structures”, Metallurgical and Materials Transactions:A, Vol. 30 A, 1999, pp. 3153-3165.
    [44] Y. R. Chen, W. S. Hwang, H. L. Hsieh, T. K. Huang, J. D. Hwang, and M. H. Hung, “Thermal simulation of thermoelectric material by zone-melting technique”, Journal of Crystal Growth, Vol. 402, 2014, pp273-284

    下載圖示 校內:2020-08-11公開
    校外:2020-08-11公開
    QR CODE