簡易檢索 / 詳目顯示

研究生: 賴俊維
Lai, Chun-Wei
論文名稱: 結合纖維素奈米晶體與深共熔溶劑製備可3D列印之穿戴式感測器
3D printable ionic sensors from deep eutectic solvents and cellulose nanocrystals
指導教授: 游聲盛
Yu, Sheng-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 74
中文關鍵詞: 穿戴式感測器深共熔溶劑纖維素奈米晶體三維列印奈米複合凝膠拉脹材料
外文關鍵詞: 3D printing, direct ink writing, nanocomposite ionogels, deep eutectic solvents, cellulose nanocrystals, wearable strain sensors, auxetic materials
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來有關穿戴式感測器的研究正蓬勃發展。由於這些裝置在受力變形時會產生電阻值差異,因此可藉由電阻值的變化來偵測目標部位的動作。目前多數的穿戴式裝置是由水凝膠製備而成。然而,由於水分的易揮發性,導致這些裝置容易失去原有的性質。此外,受限於傳統模具成形技術,難以製造出具有複雜結構的穿戴式裝置。因此,同時找到一個可以取代水凝膠且在空氣中有高穩定性的材料,以及一個能夠製造複雜結構的方法,是本論文的主要研究方向。
    在本研究中,我們結合深共熔溶劑和纖維素奈米晶體以製備可三維列印和紫外光固化的墨水。深共熔溶劑在此作為替代水的溶劑,具有低揮發性以及有效分散奈米纖維素晶體的能力,更富含大量的離子以提供離子導電性。在深共熔溶劑中的纖維素奈米晶體可形成強韌的物理網狀結構,並且可作為流體流變行為的修飾劑以及膠體機械強度的增強劑。在纖維素奈米晶體網狀結構和聚丙烯酸-鋁離子網狀結構共同作用下,此奈米複合凝膠展現出高拉伸性、強韌性和消散能量的能力。在經過許多流變和機械性質上的測試後,我們選擇了含有21 wt% 纖維素奈米晶體和1 mol% 鋁離子的有機凝膠,以三維列印製備具有拉脹行為的穿戴式感測器。結果顯示,此穿戴式感測器不僅具有高敏感度,並且能夠透過拉脹行為表現精準地偵測人類關節彎曲產生的電阻值差異。有了相對應的電阻訊號圖形,我們能夠有效辨識人類的動作。另外,值得注意的是,比較此有機凝膠和相同配方的水凝膠,我們所製備出的凝膠在空氣中具有高穩定性且能夠避免水凝膠會遇到的縮水問題。
    總結來說,本研究藉由結合纖維素奈米晶體和深共熔溶劑展示了可再生的奈米複合凝膠,不只如此,因為此種凝膠具有理想的流變性質和機械性質,我們可以利用新興的三維列印程序去製備具有複雜結構的穿戴式裝置,這項研究提供了一個新穎奈米複合材料開發的策略。

    Recently, wearable strain sensors were intensively studied due to their ability to detect human motions by the change of their resistance. Most of these sensors were prepared from hydrogels by traditional molding processes. However, the hydrogel sensors may lose their properties due to the water evaporation. It is also difficult to fabricate functional and complex structures by molding. Thus, it is necessary to find new materials as well as new methods to produce stable and structurally complicated sensors with high mechanical strength, conductivity, and stretch-ability.
    In this study, we prepared a 3D printable ionogel from deep eutectic solvents (DESs), cellulose nanocrystals (CNCs), and ionically cross-linked polyacrylic acid (PAA). The DES composed of choline chloride (ChCl) and ethylene glycol (EG) served as a non-volatile medium with high ionic conductivity. With the shear-thinning behavior and high yield stress by the CNC physical network, the ink can be extruded and printed into a customized object with high shape fidelity. The ink was further cured into the ionogel by the photo-polymerization of acrylic acid in the presence of Al3+ ions to form another ionically cross-linked network. We found the ink with 21 wt% of CNC and 1 mol% of Al3+ was most suitable for the direct ink writing (DIW) process. By combining the ionically cross-linked PAA network and the CNC physical network, the ionogel exhibited excellent mechanical properties, such as high stretch-ability, toughness, and self-recovery. From the loading-unloading tests, we found the first CNC network indeed played an important role in dissipating energy during mechanical deformation.
    When compared to hydrogels, we found the DES/CNC nanocomposite ionogel was more stable in the air due to the low volatility of the DES. In addition, the ionogel was fabricated into an auxetic sensor by the DIW process. The auxetic sensor possessed a high gauge factor (GF) and exhibited high performances in detecting different human activities by the change of resistance during the deformation. These results demonstrate a new strategy to fabricate stable, complex, and sensitive strain sensors from cheap and renewable feedstock by the DIW process.

    摘要 I ABSTRACT III ACKNOWLEDGEMENT V LIST OF TABLES i LIST OF FIGURES ii CHAPTER 1. Introduction 1 1.1 Hydrogel ionic conductors 1 1.1.1 Introduction of hydrogel ionic conductors 1 1.1.2 Ionic hydrogel as wearable strain sensors 2 1.1.3 Challenges of hydrogel-based wearable sensors 5 1.2 3D printing 6 1.2.1 Introduction of 3D printing 6 1.2.2 Stereolithography (SLA) 8 1.2.3 Digital light processing (DLP) 9 1.2.4 Fused deposition modelling (FDM) 10 1.2.5 Direct ink writing (DIW) 11 1.3 Cellulose nanocrystals (CNCs) 12 1.3.1 Extraction of cellulose nanocrystals 12 1.3.2 Dimension of cellulose nanocrystals 14 1.3.3 Properties of cellulose nanocrystals 16 1.4 Deep eutectic solvents (DESs) 17 1.4.1 Definition of deep eutectic solvents 17 1.4.2 Types of deep eutectic solvents 19 1.4.3 Properties of deep eutectic solvents 20 1.5 Objectives 22 CHAPTER 2. Experimental method 24 2.1 Materials 24 2.2 Preparation of the DES/CNC nanocomposite ionogels 24 2.3 Rheological test 25 2.4 Mechanical test 26 2.5 Electrochemical characteristics 27 2.6 3D printing 28 2.7 Water absorption test 29 2.8 Characterization 29 CHAPTER 3. Properties of the DES/CNC ionogels 31 3.1 Rheological behavior of CNC dispersion in DES/AA ink 31 3.2 Mechanical properties of the DES/CNC nanocomposite ionogels 35 3.3 Ionic conductivities of the DES/CNC nanocomposite ionogels 45 3.4 Water absorption results 47 CHAPTER 4. 3D print of the DES/CNC ink for auxetic sensor 52 4.1 The design of a 3D printable ink 52 4.2 Fabrication of auxetic sensors by DIW 54 4.3 Performance of the auxetic sensors 56 4.4 Applications of the auxetic sensor 60 CHAPTER 5. Conclusion 64 REFERENCE 65

    1. Hoffman, A. S., Hydrogels for biomedical applications. Advanced Drug Delivery Reviews 2012, 64, 18-23.
    2. Lee, K. Y.; Mooney, D. J., Hydrogels for tissue engineering. Chemical Reviews 2001, 101 (7), 1869-1880.
    3. Brahim, S.; Narinesingh, D.; Guiseppi-Elie, A., Polypyrrole-hydrogel composites for the construction of clinically important biosensors. Biosensors and Bioelectronics 2002, 17 (1-2), 53-59.
    4. Yang, C.; Suo, Z., Hydrogel ionotronics. Nature Reviews Materials 2018, 3 (6), 125.
    5. Yang, B.; Yuan, W., Highly stretchable and transparent double-network hydrogel ionic conductors as flexible thermal–mechanical dual sensors and electroluminescent devices. ACS Applied Materials & Interfaces 2019, 11 (18), 16765-16775.
    6. Shi, Y.; Pan, L.; Liu, B.; Wang, Y.; Cui, Y.; Bao, Z.; Yu, G., Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. Journal of Materials Chemistry A 2014, 2 (17), 6086-6091.
    7. Chen, B.; Bai, Y.; Xiang, F.; Sun, J. Y.; Mei Chen, Y.; Wang, H.; Zhou, J.; Suo, Z., Stretchable and transparent hydrogels as soft conductors for dielectric elastomer actuators. Journal of Polymer Science Part B: Polymer Physics 2014, 52 (16), 1055-1060.
    8. Liu, S.; Li, L., Ultrastretchable and self-healing double-network hydrogel for 3D printing and strain sensor. ACS Applied Materials & Interfaces 2017, 9 (31), 26429-26437.
    9. Yu, Y.; Luo, Y.; Guo, A.; Yan, L.; Wu, Y.; Jiang, K.; Li, Q.; Fan, S.; Wang, J., Flexible and transparent strain sensors based on super-aligned carbon nanotube films. Nanoscale 2017, 9 (20), 6716-6723.
    10. Wang, T.; Zhang, Y.; Liu, Q.; Cheng, W.; Wang, X.; Pan, L.; Xu, B.; Xu, H., A self‐healable, highly stretchable, and solution processable conductive polymer composite for ultrasensitive strain and pressure sensing. Advanced Functional Materials 2018, 28 (7), 1705551.
    11. Shao, C.; Wang, M.; Meng, L.; Chang, H.; Wang, B.; Xu, F.; Yang, J.; Wan, P., Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chemistry of Materials 2018, 30 (9), 3110-3121.
    12. Chen, Q.; Chen, H.; Zhu, L.; Zheng, J., Fundamentals of double network hydrogels. Journal of Materials Chemistry B 2015, 3 (18), 3654-3676.
    13. Wang, L.; Gao, G.; Zhou, Y.; Xu, T.; Chen, J.; Wang, R.; Zhang, R.; Fu, J., Tough, adhesive, self-healable, and transparent ionically conductive zwitterionic nanocomposite hydrogels as skin strain sensors. ACS Applied Materials & Interfaces 2018, 11 (3), 3506-3515.
    14. Chen, Q.; Yan, X.; Zhu, L.; Chen, H.; Jiang, B.; Wei, D.; Huang, L.; Yang, J.; Liu, B.; Zheng, J., Improvement of mechanical strength and fatigue resistance of double network hydrogels by ionic coordination interactions. Chemistry of Materials 2016, 28 (16), 5710-5720.
    15. Lim, H. R.; Kim, H. S.; Qazi, R.; Kwon, Y. T.; Jeong, J. W.; Yeo, W. H., Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Advanced Materials 2020, 32 (15), 1901924.
    16. Kim, H. W.; Kim, T. Y.; Park, H. K.; You, I.; Kwak, J.; Kim, J. C.; Hwang, H.; Kim, H. S.; Jeong, U., Hygroscopic auxetic on-skin sensors for easy-to-handle repeated daily use. ACS Applied Aaterials & Interfaces 2018, 10 (46), 40141-40148.
    17. Kolken, H. M.; Zadpoor, A., Auxetic mechanical metamaterials. RSC Advances 2017, 7 (9), 5111-5129.
    18. Espalin, D.; Muse, D. W.; MacDonald, E.; Wicker, R. B., 3D Printing multifunctionality: structures with electronics. The International Journal of Advanced Manufacturing Technology 2014, 72 (5-8), 963-978.
    19. Belhabib, S.; Guessasma, S., Compression performance of hollow structures: From topology optimisation to design 3D printing. International Journal of Mechanical Sciences 2017, 133, 728-739.
    20. Zhang, W.; Feng, C.; Yang, G.; Li, G.; Ding, X.; Wang, S.; Dou, Y.; Zhang, Z.; Chang, J.; Wu, C., 3D-printed scaffolds with synergistic effect of hollow-pipe structure and bioactive ions for vascularized bone regeneration. Biomaterials 2017, 135, 85-95.
    21. Ngo, T. D.; Kashani, A.; Imbalzano, G.; Nguyen, K. T.; Hui, D., Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering 2018, 143, 172-196.
    22. Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D., 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering 2017, 110, 442-458.
    23. Kim, G. B.; Lee, S.; Kim, H.; Yang, D. H.; Kim, Y.-H.; Kyung, Y. S.; Kim, C.-S.; Choi, S. H.; Kim, B. J.; Ha, H., Three-dimensional printing: basic principles and applications in medicine and radiology. Korean Journal of Radiology 2016, 17 (2), 182-197.
    24. Patel, D. K.; Sakhaei, A. H.; Layani, M.; Zhang, B.; Ge, Q.; Magdassi, S., Highly stretchable and UV curable elastomers for digital light processing based 3D printing. Advanced Materials 2017, 29 (15), 1606000.
    25. Truby, R. L.; Lewis, J. A., Printing soft matter in three dimensions. Nature 2016, 540 (7633), 371-378.
    26. Tian, K.; Bae, J.; Bakarich, S. E.; Yang, C.; Gately, R. D.; Spinks, G. M.; In Het Panhuis, M.; Suo, Z.; Vlassak, J. J., 3D printing of transparent and conductive heterogeneous hydrogel–elastomer systems. Advanced Materials 2017, 29 (10), 1604827.
    27. Lei, Z.; Wu, P., A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation. Nature Communications 2019, 10 (1), 1-9.
    28. HuangáGoh, W.; HoseináSakhaei, A., Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing. Journal of Materials Chemistry B 2018, 6 (20), 3246-3253.
    29. Lewis, J. A., Direct ink writing of 3D functional materials. Advanced Functional Materials 2006, 16 (17), 2193-2204.
    30. Hong, S.; Sycks, D.; Chan, H. F.; Lin, S.; Lopez, G. P.; Guilak, F.; Leong, K. W.; Zhao, X., 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Advanced Materials 2015, 27 (27), 4035-4040.
    31. Yang, J.; Han, C.-R.; Duan, J.-F.; Ma, M.-G.; Zhang, X.-M.; Xu, F.; Sun, R.-C., Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals–polyacrylamide nanocomposite hydrogels. Cellulose 2013, 20 (1), 227-237.
    32. Lagerwall, J. P. F.; Schütz, C.; Salajkova, M.; Noh, J.; Hyun Park, J.; Scalia, G.; Bergström, L., Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. Nature Publishing Group Asia Materials 2014, 6, e80.
    33. Frka-Petesic, B.; Guidetti, G.; Kamita, G.; Vignolini, S., Controlling the photonic properties of cholesteric cellulose nanocrystal films with magnets. Advanced Materials 2017, 29 (32).
    34. Dong, X. M.; Revol, J.-F.; Gray, D. G., Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 1998, 5 (1), 19-32.
    35. Siqueira, G.; Kokkinis, D.; Libanori, R.; Hausmann, M. K.; Gladman, A. S.; Neels, A.; Tingaut, P.; Zimmermann, T.; Lewis, J. A.; Studart, A. R., Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Advanced Functional Materials 2017, 27 (12), 1604619.
    36. Zhang, T.; Zuo, T.; Hu, D.; Chang, C., Dual physically cross-linked nanocomposite hydrogels reinforced by tunicate cellulose nanocrystals with high toughness and good self-recoverability. ACS Applied Materials & Interfaces 2017, 9 (28), 24230-24237.
    37. Yang, J.; Han, C.-R.; Zhang, X.-M.; Xu, F.; Sun, R.-C., Cellulose nanocrystals mechanical reinforcement in composite hydrogels with multiple cross-links: correlations between dissipation properties and deformation mechanisms. Macromolecules 2014, 47 (12), 4077-4086.
    38. Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jerome, F., Deep eutectic solvents: syntheses, properties and applications. Chemical Society Reviews 2012, 41 (21), 7108-46.
    39. Smith, E. L.; Abbott, A. P.; Ryder, K. S., Deep eutectic solvents (DESs) and their applications. Chemical Reviews 2014, 114 (21), 11060-11082.
    40. Abbott, A. P.; Barron, J. C.; Ryder, K. S.; Wilson, D., Eutectic‐based ionic liquids with metal‐containing anions and cations. Chemistry–A European Journal 2007, 13 (22), 6495-6501.
    41. Ren'ai, L.; Zhang, K.; Chen, G.; Su, B.; Tian, J.; He, M.; Lu, F., Green polymerizable deep eutectic solvent (PDES) type conductive paper for origami 3D circuits. Chemical Communications 2018, 54 (18), 2304-2307.
    42. Li, R. a.; Chen, G.; He, M.; Tian, J.; Su, B., Patternable transparent and conductive elastomers towards flexible tactile/strain sensors. Journal of Materials Chemistry C 2017, 5 (33), 8475-8481.
    43. Qin, H.; Panzer, M. J., Chemically cross-linked poly(2-hydroxyethyl methacrylate)-supported deep eutectic solvent gel electrolytes for eco-friendly supercapacitors. ChemElectroChem 2017, 4 (10), 2556-2562.
    44. Chen, Y.; Yu, D.; Chen, W.; Fu, L.; Mu, T., Water absorption by deep eutectic solvents. Physical Chemistry Chemical Physics 2019, 21 (5), 2601-2610.
    45. Habibi, Y., Key advances in the chemical modification of nanocelluloses. Chemical Society Reviews 2014, 43 (5), 1519-1542.
    46. Shafiei-Sabet, S.; Hamad, W.; Hatzikiriakos, S., Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose 2014, 21 (5), 3347-3359.
    47. Cao, T.; Szilagyi, I.; Oncsik, T.; Borkovec, M.; Trefalt, G., Aggregation of colloidal particles in the presence of multivalent co-ions: The inverse Schulze–Hardy rule. Langmuir 2015, 31 (24), 6610-6614.
    48. Olles, J. R.; Slavik, P.; Whitelaw, N. K.; Smith, D. K., Self‐assembled gels formed in deep eutectic solvents: supramolecular eutectogels with high ionic conductivities. Angewandte Chemie International Edition 2019, 4173-4178.
    49. Chen, Q.; Wei, D.; Chen, H.; Zhu, L.; Jiao, C.; Liu, G.; Huang, L.; Yang, J.; Wang, L.; Zheng, J., Simultaneous enhancement of stiffness and toughness in hybrid double-network hydrogels via the first, physically linked network. Macromolecules 2015, 48 (21), 8003-8010.
    50. Kataoka, T.; Ishioka, Y.; Mizuhata, M.; Minami, H.; Maruyama, T., Highly conductive ionic-liquid gels prepared with orthogonal double networks of a low-molecular-weight gelator and cross-linked polymer. ACS Applied Materials & Interfaces 2015, 7 (41), 23346-23352.
    51. Abbott, A. P.; Capper, G.; Gray, S., Design of improved deep eutectic solvents using hole theory. ChemPhysChem 2006, 7 (4), 803-806.
    52. Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K., Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. Journal of the American Chemical Society 2004, 126 (29), 9142-9147.
    53. Kapnisi, M.; Mansfield, C.; Marijon, C.; Guex, A. G.; Perbellini, F.; Bardi, I.; Humphrey, E. J.; Puetzer, J. L.; Mawad, D.; Koutsogeorgis, D. C., Auxetic cardiac patches with tunable mechanical and conductive properties toward treating myocardial infarction. Advanced Functional Materials 2018, 28 (21), 1800618.
    54. Wong, J.; Gong, A. T.; Defnet, P. A.; Meabe, L.; Beauchamp, B.; Sweet, R. M.; Sardon, H.; Cobb, C. L.; Nelson, A., 3D printing ionogel auxetic frameworks for stretchable sensors. Advanced Materials Technologies 2019, 4 (9), 1900452.
    55. Amjadi, M.; Kyung, K. U.; Park, I.; Sitti, M., Stretchable, skin‐mountable, and wearable strain sensors and their potential applications: a review. Advanced Functional Materials 2016, 26 (11), 1678-1698.

    下載圖示 校內:2025-07-27公開
    校外:2025-07-27公開
    QR CODE