簡易檢索 / 詳目顯示

研究生: 蔣鎮羽
Chiang, Chen-Yu
論文名稱: 應用殘差修正法於非線性暫態熱傳問題數值解之誤差上下限估測
Application of Residual Correction Method on Error Analysis of Numerical Solutions of Non-linear Transient Heat Transfer Problems
指導教授: 邱政勳
Chiou, Jenq-Shing
陳朝光
Chen, Cha’o-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 97
中文關鍵詞: 有限差分法誤差分析殘差修正法最大值原理
外文關鍵詞: finite difference method, maximum principle, error analysis, residual correction method
相關次數: 點閱:168下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討微分方程之最大值原理應用於有限差分法求解非線性偏微分方程式的較大、較小近似解上下限及數值解的誤差範圍。研究方法採用偏微分方程最大值原理為基礎建構方程式的單調殘差關係式,並以有限差分法離散統御方程式,及搭配殘差修正法,求得拘束條件下的不等式最佳解,並將殘差修正的程序併入有限差分法非線性疊代過程中更可快速地求解相對於正確解的較大與較小近似解,至於在非線性問題的求解上無需增加額外的疊代次數即可求得近似解的最大誤差範圍。而根據求得的較大及較小暫態近似解不但能夠正確分析數值解與解析解的最大可能誤差範圍,數值驗證也顯示求得之近似解上下限的平均值仍具有良好的精度。
    因此,殘差修正法具備誤差分析的特性,並能有效解決傳統數值方法上盲目的增加格點之缺點,達到節省計算時間、降低記憶體空間與避免不必要的反覆測試。整體來說,殘差修正法為便利且效率高並具有良好精度的數值方法。

    This study investigates the method of the maximum principle applying on differential equations to solve the upper and lower approximate solutions of non-linear partial differential equations and their error range. Under the fundamental of the maximum principle, we establish the monotonic residual relations of the partial differential governing equations. We use the finite difference method to discretize the equations, and combine the Residual Correction Method to obtain the optimal solutions under the constrain of inequalities. Incorporating the Residual Correction Method into the nonlinear iteration procedure of the finite difference, the comparisons between the upper/lower approximate solutions and the exact solution can be achieved effectively. For the nonlinear problem, it is unnecessary to add additional iteration times and obtain the range of the maximum possible error with the analytic solutions. With respect to the upper and lower transient approximate solution, we can precisely analyze the range of the maximum possible error with the analytic solutions. The results reveal that the mean values of the upper and lower approximate solutions show the satisfactory accuracy.

    Therefore, the Residual Correction Method with error-analysis characteristic can correct the defects resulting from increasing the numbers of grids or approximate functions when using traditional numerical methods. The methodology can save the computing time, reduce the storage of memory and avoid unnecessary repeated testing. Generally, the Residual Correction Method is an excellent numerical method. It can solve the varieties of complicated partial differential equations with preciseness and effectiveness.

    摘要 I Abstract II 目錄 V 表目錄 VII 圖目錄 VIII 符號說明 XII 第一章 緒論 1 1.1 研究動機及背景 1 1.2 文獻回顧 3 1.3 本文架構 5 第二章 最大值原理與單調性 7 2.1 微分方程最大值原理與單調性 7 2.2 一維最大值原理 8 2.3 邊界值最大值原理 9 2.3.1簡單的邊界值問題的單調性 9 2.3.2複雜的邊界值問題的單調性 10 2.4 初始值最大值原理 14 2.5 非線性問題的最大值原理 16 2.6 偏微分方程的最大值原理 18 2.7 拋物線型的最大值原理 21 第三章 有限差分的殘差修正法步驟 23 3.1 前言 23 3.2 有限差分法與微分方程最大值原理之關聯 26 3.3 殘差修正法之觀念 29 3.4 殘差修正法之解題步驟 32 第四章 實例分析 36 4.1 前言 36 4.2 一維穩態熱傳問題 37 4.3 暫態非線性熱傳問題 49 4.4 較複雜暫態非線性熱傳方程式 60 4.5 二維圓柱型散熱鰭片 73 4.6 非傅立葉散熱片 81 第五章 結論與建議 90 5.1 結論 90 5.2 建議與展望 91 參考文獻 92

    Aziz, A. and Hug, S. M. Enamul, ”Perturbation solution for convecting fin with variable thermal conductivity”, Trans. ASME, J. of Heat Transfer, pp. 300-301, 1975.

    Aziz, A. and Na, T. Y., ”Periodic heat transfer in fins with variable thermal parameters”, Int. J. Heat Mass Transfer, Vol. 24, pp. 1397-1404, 1981.

    Cabada, A., Habets, P. and Lois, S., “Monotone method for the Neumann problem with lower and upper solutions in the reverse order”, Applied Mathematics and Computation, Vol. 117, pp. 1-14, 2001.

    Chang, W. J., Chen, U. C. and Chou, H. M., “Transient analysis of two-dimensional pin fins with non-constant base temperature”, JSME International Journal, Series B: Fluids and Thermal Engineering, Vol. 45, pp. 331-337, 2002.

    Chen, B. S., Tong, L. Y., Gu, Y. X., et al., “Transient heat transfer analysis of functionally graded materials using adaptive precise time integration and graded finite elements”, Number Heat Tr. B-Fund., Vol. 45, pp. 181-200, 2004.

    Chen, H. T. and Chen, C. K., “Hybrid laplace transform/finite difference method for transient heat conduction problems”, International Journal for Numerical Method in Engineering, Vol. 26, pp. 1433-1447, 1988.

    Chiu, C. H., Chen, C. K., ”A decomposition method for solving the convective longitudinal fins with variable thermal conductivity”, Int. J. Heat Mass. Tran., Vol. 45, pp. 2067-2075, 2002.

    Chiu, C. H., Chen, C. K., “Application of Adomian’s Decomposition Procedure to the Analysis of Convective - Radiative Fins”, Journal of Heat Transfer, Vol. 125, pp. 312-316, 2003.

    Chu, H. S., Chen, C. K. and Weng, C. I., ”Transient response of circular pins”, Trans. ASME, J. of Heat Transfer, Vol. 105, pp. 205-208, 1983.

    Chu, S. S., and Chang, W. J., “Hybrid numerical method for transient analysis of two-dimensional pin fins with variable heat transfer coefficients”, Int. Commun. Heat Mass., Vol. 29, pp. 367-376, 2002.

    Chu, S. S. and Chang, W. J. , “Hybrid numerical method for transient analysis of two-dimensional pin fins with variable heat transfer coefficients”, International Communications in Heat and Mass Transfer, Vol. 29, pp. 367-376, 2002.

    Eslinger, R. G., Chung B. T. F., ”Periodic heat transfer in radiating 191 and convecting fins or fin arrays”, AIAA Journal , Vol. 17, pp.1134-1140, 1979.

    Ganji, D. D., Afrouzi, G. A., “Application of variational iteration method and homotopy-perturbation method for nonlinear heat diffusion and heat transfer equations”, Phys. Lett. A, Vol. 368, pp. 450-457, 2007.

    Garg, V. K., Velusamy, K., ”On the heat transfer from a cylindrical fin”, Int. J. Heat Mass Transfer, Vol. 32, pp. 187-192, 1989.

    Hafez, H. Tari and Ganji, D. d., ”The application of He's variational iteration method to nonlinear equations arising in heat transfer”, Phys. Lett. A, Vol. 363, pp. 213-217, 2007.

    Heggs, P. J., Ingham, D. B. and Manzoor, M., ”The effects of 190 nonuniform heat transfer from an annular fin of triangular profile”, Trans. ASME, J. of Heat Transfer, Vol. 103, pp. 184-185, 1981.

    Huang, C. H., and Wu, H. H., “An Iterative Regularization Method inEstimating the Base Temperature for Non-Fourier Fins,” International Journal of Heat and Mass Transfer, Vol. 49, Nos. 25–26, pp. 4893–4902, 2006.

    Mao, J. and Rooke, S., “Transient analysis of extended surfaces with convective tip”, Int. Comm. Heat Mass Transfer, Vol. 21, pp. 85-94, 1994.

    Muzzio, A., ”Approximate solution for convective fins with variable thermal conductivity”, Trans. ASME, J. of Heat Transfer, pp.680-682, 1976.

    Ladde, G. S., Lakshmikantham, V. and Vatsala, A. S., “Monotone iterative techniques for nonlinear differential equations”, Wiley, Eastern Distribution Center, NJ, 1985.

    Lee, Z. Y., “Appling the Double Side Method of Weighted Residual to the Solution of Shell Deformation Problem”, Applied Mathematics and Computation, Vol. 167, pp. 622-634, 2005.

    Lin, J.Y., “The non-Fourier effect on the fin performance under periodic thermal conditions”, Appl. Math. Model. Vol. 22, pp.629–640, 1998.

    Liu, L. H., Tan, J. Y., “Meshless local Petrov-Galerkin approach for coupled radiative and conductive heat transfer”, Int. J. Therm. Sci., Vol. 46, pp. 672-681, 2007.

    Protter, M. H., “Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs”, NJ, 1967.

    TAKANOBU, G. and MASAAKI, S., “A boundary integral equation method for nonliinear heat conduction problems with temperature-dependent material properties”, International Journal of Heat and Mass Transfer. Vol. 39, pp. 823-830, 1996.

    Wang, C. C., “Use of new residual correction method to calculate upper and lower solutions of natural convection”, Numerical Heat Transfer Part A: Applications, Vol. 51, pp. 249-265, 2007.

    Wang, C. C., “Application of finite difference residual correction method for nonlinear heat transfer problems”, Numerical Heat Transfer Part B: Fundamentals, Vol. 55, pp. 35-55, 2009.

    Yang, C. Y., “Estimation of the periodic thermal conditions on the non-Fourier fin problem”, International Journal of Heat and Mass Transfer, 48,pp. 3506–3515. , 2005.

    Yu, L. T., Chen, C. K., ”Application of Taylor Transformation to Optimize rectangular fins with variable thermal parameters”, Application Mathematical Modelling, Vol. 22, pp. 11-21, 1998.

    Yu, L. T., Chen, C. K., Application of the hybrid method to the transient thermal stresses response in isotropic annular fins,. Trans. ASME, J. of applied Mechanics, Vol. 66, pp. 340-346, 1999.

    謝曉星,計算流體力學及熱傳學,高立出版,1993.

    林金木,數學規劃加權殘值法在工程上之應用,博士論文,成功大學,2000.

    李宗乙,遺傳算則之双側逼近加權殘值法在工程上之應用,博士論文,成功大學,2001.

    邱青煌,Adomian分解法應用在非線性散熱片之熱傳分析,博士論文,成功大學,2002.

    鄭家宜,應用殘差修正法於非線性熱傳問題之研究,碩士論文,成功大學,2008.

    下載圖示 校內:2012-07-28公開
    校外:2012-07-28公開
    QR CODE