簡易檢索 / 詳目顯示

研究生: 丁柏豪
Ding, Bo-Hao
論文名稱: 精進道路工程碳足跡產品類別規則:應用複合生命週期產品碳足跡資料庫量化道路工程碳足跡
Enhancing Carbon Footprint Product Category Rule of Road: Quantifying the Embedded Carbon of Road Using Hybrid Life Cycle Assessment-Based Carbon Footprint Database
指導教授: 楊士賢
Yang, Shih-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 136
中文關鍵詞: 道路工程碳足跡產品類別規則道路工程碳排放熱點複合生命週期法數據品質表
外文關鍵詞: road construction carbon footprint product category rules, carbon emission hotspots in road construction, hybrid life cycle assessment data quality table
相關次數: 點閱:111下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在2021年聯合國氣候變遷大會(Conference of the Parties)的會議上,197個與會國家為避免氣候變遷,共同通過新協議:《格拉斯哥氣候公約》,此公約重申2015年《巴黎協定》的降溫目標,努力將全球平均氣溫上升的幅度控制在2℃之內,許多國家同意要在2050年達成近零碳排放的目標。而台灣的國家發展委員會在隔年3月公布了台灣2050近零排放路徑及策略總說明,這項宣示顯示台灣政府對於減少碳排放的承諾。而營建產業的碳排放量相較其他產業是相當高的,所以對營建產業進行減碳是刻不容緩的。
    然而對道路工程進行碳足跡量化時,卻發現國內道路工程碳足跡產品類別規則相較於國際規範,國內規範的計算框架過於廣泛且執行困難,效果不佳。為此研究中提出一個優化的計算框架以增加效率、節省成本,並減輕量化的負擔,從而提升國內工程碳足跡量化的速度。加速工程碳足跡的量化能更迅速地找到排放熱點,進而有效地減少碳排放。研究中也利用新框架,分析了一個實際案例,找出案例中各個大項中的排放熱點,以此案例來檢視道路工程中各個大項內的碳排放熱點為何處,以此結果來顯示應將重點著重在哪些工項上,以減少量化時的負擔,同時展示雖然各大項中都還包含了14~32個工項,但如僅計算碳排放站比較高的幾個工項也能計算出該大項95%的工程碳排放量,以最有效率的方式對道路工程進行碳足跡的量化。另外考慮到對工程材料進行碳足跡量化時數據品質會有差異性,而國內又無符合,複合生命週期評估的碳足跡數據品質評分表,所以研究中也建立了一套複合生命週期評估的碳足跡數據品質評分表,以確保數據的品質和透明度,清楚的展示各個材料的碳係數數據品質評分。

    In March 2022, Taiwan's National Development Council announced the "Overview of Taiwan's 2050 Near-Zero Emissions Path and Strategy", emphasizing the Taiwan government's commitment to reducing carbon emissions. Considering that the construction industry has a significant carbon footprint compared to other industries, carbon reduction in this industry must be prioritized.
    However, when quantifying the carbon footprint of road construction, the study found that domestic road construction carbon footprint product category rules were too broad and challenging compared with international standards, leading to unsatisfactory results. This study introduces an optimized computational framework to improve efficiency, reduce costs, and ease the burden of quantification, thereby accelerating the pace of domestic carbon footprint quantification. Through this new framework, the study analyzes real-world cases to pinpoint emission hotspots within their main categories. The study clarifies the main carbon emission hotspots in various road engineering tasks, guides the focus on specific tasks, and simplifies quantification. The findings suggest that while each major category consists of 14~32 tasks, focusing on just a few high-emitting tasks can account for 95% of the category's total carbon emissions.
    In addition, considering the variation in data quality during the quantification of the carbon footprint of building materials, and the absence of a scoring system suitable for hybrid life cycle assessment in Taiwan, this study established a Hybrid Life Cycle Carbon Footprint Data Quality Scoring Table. The table clearly indicates the carbon factor data quality score for each material, ensuring both data quality and transparency.

    摘要 i ABSTRACT iii 誌謝 ix 目錄 x 表目錄 xiii 圖目錄 xvi 第一章 緒論 1 1.1 研究背景與動機1 1.2 研究目的 2 1.3 研究流程 3 1.4 研究限制 5 第二章 文獻回顧 7 2.1 碳足跡產品類別規則CFP-PCR 7 2.1.1 國內工程PCR 8 2.1.2 國外工程PCR 11 2.2 生命週期盤查 (Life Cycle Inventory, LCI) 12 2.2.1 製程分析法(Process-Based Analysis) 13 2.2.2 投入產出法(Input-Output-Based Analysis) 14 2.2.3 複合分析法(Hybrid Analysis Method) 16 2.3 工程碳足跡相關研究 17 2.3.1 國內工程碳足跡計算研究 18 2.3.2 國外工程碳足跡計算研究 19 第三章 評估方法 21 3.1 評估流程與邊界 21 3.1.1 案例計算流程 21 3.1.2 評估邊界 23 3.2 工項材料活動強度 27 3.2.1 活動強度 27 3.2.2 活動強度數據來源 28 3.3 工項產品碳排放係數 33 3.3.1 營建產品碳足跡資料庫 33 3.3.2 產品碳排放係數計算 36 3.3.3 人、機、植栽碳排放係數 38 3.4 複合生命週期評估之產品碳足跡數據品質評分 41 3.4.1 數據品質評分架構 41 3.4.2 數據品質評分表 44 第四章 案例評估 51 4.1 案例背景介紹 51 4.1.1 本案利工程預算書 53 4.1.2 本案利工程詳細價目表 54 4.2 產品碳足跡計算 57 4.2.1 搖籃到工廠大門 57 4.2.2 工廠大到工地大門 58 4.2.3 搖籃到工地大門 59 4.3 碳足跡數據品質評分 60 4.3.1 鋼筋 60 4.3.2 預拌混凝土 62 4.3.3 H型鋼 63 4.4 工項碳足跡 65 4.4.1 瀝青透層碳排放計算 65 4.4.2 有孔高密度聚氯乙烯管,D=150 mm 70 4.5 工程碳足跡 76 4.5.1 各大項碳足跡 76 4.5.2 施工作業碳足跡 80 第五章 結論與建議 92 5.1 結論 92 5.2 建議 93 參考文獻 96 附錄一 工項碳足跡 100 附錄二 產品數據品質評分 119

    Aurangzeb, Q., Al-Qadi, I. L., Ozer, H., & Yang, R. (2014). Hybrid life cycle assessment for asphalt mixtures with high RAP content. Resources, Conservation and Recycling, 83, 77-86.
    Bilec, M., Ries, R., Matthews, H. S., & Sharrard, A. L. (2006). Example of a hybrid life-cycle assessment of construction processes [Article]. Journal of Infrastructure Systems, 12(4), 207-215.
    Bullard, C. W., Penner, P. S., & Pilati, D. A. (1978). Net energy analysis: Handbook for combining process and input-output analysis. Resources and Energy, 1(3), 267-313.
    Cass, D., & Mukherjee, A. (2011). Calculation of greenhouse gas emissions for highway construction operations by using a hybrid life-cycle assessment approach: case study for pavement operations. Journal of Construction Engineering and Management, 137(11), 1015-1025.
    Chang, Y., Ries, R. J., & Wang, Y. (2010). The embodied energy and environmental emissions of construction projects in China: An economic input–output LCA model. Energy Policy, 38(11), 6597-6603.
    Cicas, G., Hendrickson, C. T., Horvath, A., & Matthews, H. S. (2007). A regional version of a US economic input-output life-cycle assessment model. The International Journal of Life Cycle Assessment, 12, 365-372.
    Crishna, N., Banfill, P. F. G., & Goodsir, S. (2011). Embodied energy and CO2 in UK dimension stone. Resources, Conservation and Recycling, 55(12), 1265-1273.
    Dai, J. G., & Ueda, T. (2012). Carbon footprint analysis of fibre reinforced polymer (FRP) incorporated pedestrian bridges: A Case Study. Key Engineering Materials, 517, 724-729.
    Hondo, H., Sakai, S., & Tanno, S. (2002). Sensitivity analysis of total CO2 emission intensities estimated using an input–output table. Applied Energy, 72(3), 689-704.
    Huang, Y., Hakim, B., & Zammataro, S. (2013). Measuring the carbon footprint of road construction using CHANGER. International Journal of Pavement Engineering, 14(6), 590-600.
    Joshi, S. (1999). Product environmental life‐cycle assessment using input‐output techniques. Journal of industrial ecology, 3(2‐3), 95-120.
    Lave, L. B. (1995). Using input-output analysis to estimate economy-wide discharges. Environmental Science & Technology, 29(9), 420A-426A.
    Leontief, W. (1986). Input-output economics. Oxford University Press.
    Li, L., & Chen, K. (2017). Quantitative assessment of carbon dioxide emissions in construction projects: A case study in Shenzhen. Journal of Cleaner Production, 141, 394-408.
    Li, Y.-F., Yu, C.-C., Chen, S.-Y., & Sainey, B. (2013). The carbon footprint calculation of the GFRP pedestrian bridge at Tai-Jiang National Park. International Review for Spatial Planning and Sustainable Development, 1(4), 13-28.
    Lin, S. J., Liu, C. H., & Lewis, C. (2012). CO2 emission multiplier effects of Taiwan’s electricity sector by input-output analysis. Aerosol and Air Quality Research, 12(2), 180-190.
    Mattila, T. J., Pakarinen, S., & Sokka, L. (2010). Quantifying the Total Environmental Impacts of an Industrial Symbiosis - a Comparison of Process-, Hybrid and Input−Output Life Cycle Assessment. Environmental Science & Technology, 44(11), 4309-4314.
    OECD, I. (2016). Energy and air pollution: world energy outlook special report 2016.
    Pomponi, F., & Lenzen, M. (2018). Hybrid life cycle assessment (LCA) will likely yield more accurate results than process-based LCA. Journal of Cleaner Production, 176, 210-215.
    Rowley, H. V., Lundie, S., & Peters, G. M. (2009). A hybrid life cycle assessment model for comparison with conventional methodologies in Australia. The International Journal of Life Cycle Assessment, 14, 508-516.
    Sharrard, A. L., Matthews, H. S., & Ries, R. J. (2008). Estimating construction project environmental effects using an input-output-based hybrid life-cycle assessment model. Journal of Infrastructure Systems, 14(4), 327-336.
    Singh, A., Vaddy, P., & Biligiri, K. P. (2020). Quantification of embodied energy and carbon footprint of pervious concrete pavements through a methodical lifecycle assessment framework. Resources, Conservation and Recycling, 161, 104953.
    Sizirici, B., Fseha, Y., Cho, C.-S., Yildiz, I., & Byon, Y.-J. (2021). A Review of Carbon Footprint Reduction in Construction Industry, from Design to Operation. Materials, 14(20).
    Smith, P., Beaumont, L., Bernacchi, C. J., Byrne, M., Cheung, W., Conant, R. T., Cotrufo, F., Feng, X., Janssens, I., & Jones, H. (2022). Essential outcomes for COP26.
    Suh, S., & Huppes, G. (2005). Methods for life cycle inventory of a product. J. Cleaner Prod., 13, 687.
    Wang, X., Duan, Z., Wu, L., & Yang, D. (2015). Estimation of carbon dioxide emission in highway construction: a case study in southwest region of China. Journal of Cleaner Production, 103, 705-714.
    Weidema, B. P., & Wesnæs, M. S. (1996). Data quality management for life cycle inventories—an example of using data quality indicators. Journal of Cleaner Production, 4(3), 167-174.
    Yan, H., Shen, Q., Fan, L. C. H., Wang, Y., & Zhang, L. (2010). Greenhouse gas emissions in building construction: A case study of One Peking in Hong Kong. Building and Environment, 45(4), 949-955.
    Yang, Y., Heijungs, R., & Brandão, M. (2017). Hybrid life cycle assessment (LCA) does not necessarily yield more accurate results than process-based LCA. Journal of Cleaner Production, 150, 237-242.
    Zhang, X., & Wang, F. (2016). Assessment of embodied carbon emissions for building construction in China: Comparative case studies using alternative methods. Energy and Buildings, 130, 330-340.
    Zhang, Y., Yan, D., Hu, S., & Guo, S. (2019). Modelling of energy consumption and carbon emission from the building construction sector in China, a process-based LCA approach. Energy Policy, 134, 110949.
    低碳建築聯盟LCBA. 低碳建築聯盟LCBA. https://www.lcba.org.tw/
    吳冠伋. (2018). 開發設計導向之永續運輸基礎設施管理 (STIM) 碳足跡評估工具-公路橋梁系統
    林家倫. (2022). 以營建產品複合生命週期資料庫量化建築工程碳足跡-以成大校舍工程為例 國立成功大學]. 台南市.
    林憲德. (2015). 建築碳足跡.
    楊敬緯. (2022). 基於複合生命週期產品碳足跡分析建立營建產品碳足跡係數資料庫:以道路工程為例 國立成功大學]. 台南市.
    鄭家尹. (2016). 營造工程碳足跡分析-以建築結構為例 國立成功大學]. 台南市.
    羅元佑. (2016). 碳足跡計算假設與流程之建立與印證–以某道路工程為例 國立成功大學]. 台南市.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE