簡易檢索 / 詳目顯示

研究生: 謝堯勳
Hsieh, Yao-Hsun
論文名稱: 探討去組合蛋白之RGD功能區間及C端區域在辨識組合蛋白avb3及a5b1的角色
The Roles of the RGD Motif and C-Terminal Region of Disintegrin in Recognizing Integrins avb3 and a5b1
指導教授: 莊偉哲
Chuang, Woei-Jer
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 88
中文關鍵詞: 蛋白質骨架動力學去組合蛋白組合蛋白
外文關鍵詞: Rhodostomin, dynamics, disintegrin, NMR, RGD, integrin
相關次數: 點閱:90下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 組合蛋白(integrins)是一群由a及b次單位所組合而成的穿膜蛋白受體,它們在生理上所參與的功能,包括:細胞之間的黏合、細胞的遷移以及訊息的傳遞...等等。很多源自於體內或非源自於體內的配體,大多使用RGD(Arg-Gly-Asp)、LDV(Leu-Asp-Val)或是其他一小段的胺基酸序列,以做為和組合蛋白結合的位置。去組合蛋白(disintegrins)是從蛇毒毒液中所得到的小蛋白,通常含有RGD的胺基酸序列並富含有胺基酸Cys。去組合蛋白會和組合蛋白的b1及b3次單位結合。Rhodostomin(簡稱Rho)是個容易和血小板上的組合蛋白aIIbb3結合,而抑制血小板凝集的去組合蛋白;它擁有68個胺基酸,在其胺基酸位置48-53的PRGDMP序列是它的活性功能區間。由過去細胞黏合及血小板凝集實驗的分析結果,我們發現當把胺基酸P48突變成胺基酸Ala後,其抑制組合蛋白a5b1的能力增加了4.4倍,而當把胺基酸D51突變成胺基酸Glu後,其抑制組合蛋白的能力下降了863倍,但是在NMR結構上的分析,並未發現這兩個突變蛋白與Rho有結構上的明顯差異。經由蛋白質骨架動力學的研究後,我們發現位於RGD功能區間的胺基酸R49及D51具有蛋白質動力學特質的差異。Rho的胺基酸R49及D51比突變蛋白P48A相同的胺基酸具有1.4及1.5倍高的R2遲緩參數,造成了model-free參數Rex及e的不同;Rho的胺基酸R49及D51之Rex值分別為1.39及2.94 s-1,相對的,突變蛋白P48A則不具Rex值。然而,Rho的胺基酸R49及D51之te值分別為0.11及0.11 ns,這相對於突變蛋白P48A的0.77及0.73 ns是較低的。由這樣子的結果,似乎指出:突變蛋白P48A的胺基酸R49及D51,因為具有較多的te值,而且不具有Rex值,因而使得P48A對於組合蛋白a5b1具有較好的抑制能力。我們也發現突變蛋白D51E胺基酸E51的R2遲緩參數比Rho高出1.13倍,使的其Rex值成為4.09 s-1,這比Rho胺基酸D51的Rex值高出了1.4倍;因此,胺基酸D51 Rex值的高低,對於Rho的功能活性似乎扮演重要角色。我們也使用NMR的方法,決定會和組合蛋白avb3專一性結合之突變蛋白G50L的立體結構;從結構上的分析結果,發現突變蛋白G50L除了L50的側鏈位向與Rho有較大的差異以外,G50L與Rho具有類似的立體摺疊。在決定突變蛋白G50L的蛋白質骨架動力學後,發現Rho胺基酸G50及突變蛋白G50L胺基酸L50的S2值,分別為0.63及0.75;而Rho胺基酸G50及突變蛋白G50L胺基酸L50之的te值,分別為0.81及0.07 ns。然而,突變蛋白G50L胺基酸L50具有0.48 s-1的Rex值,但Rho胺基酸G50不具有Rex值。Rho及突變蛋白G50L胺基酸D51的Rex值,則分別為2.94及1.61 s-1。從這些結果可以知道,在RXD功能區間的胺基酸R及D之蛋白質骨架動力學性質與構形,對於調控和組合蛋白結合的親和力及專一性扮演重要的角色。除此之外,為了探討去組合蛋白延長的C端對於去組合蛋白的結構與功能活性之相關性,我們表現純化並利用NMR的方法決定了三個Rho C端延長突變蛋白的立體結構,包括:P48A/M52D/P53M-NPHKGPAT (DM-NPHKGPAT), P48A/M52N-NRFH (NP-NRFH),以及P48A/M52W/P53N-NPWNG (WN-NPWNG)。經過NMR圖譜的分析,發現P48A/M52W/P53N-NPWNG (WN-NPWNG)這個C端延長突變蛋白的胺基酸D51會和C端胺基酸WNG有相互作用,這代表C端區域的胺基酸WNG,可能成為另一個辨識組合蛋白的位置。統整這些結果,我們推測:去組合蛋白RGD功能區間及C端區域胺基酸的蛋白質動力學特質及構形,對於和組合蛋白的結合扮演了重要角色。

    Integrins are a/b heterodimeric receptors that are involved in cell adhesion, mobility, and signal transduction. Many physiological and non-physiological integrin ligands utilize RGD, LDV, or a short sequence as a key structural component for their integrin-binding site. Disintegrins are a family of RGD-containing and cysteine-rich proteins isolated from snake venoms. They interact with the b1 and b3 families of integrins. Rhodostomin (Rho) is a disintegrin that inhibits the platelet aggregation by blocking integrin aIIbb3 of platelets. Rho consists of 68 amino acids with a PRGDMP sequence at positions of 48-53. Functional analysis of Rho and its mutants using cell adhesion and platelet aggregation assays, we found that the mutation of P48 to A caused a 4-fold increase in its activity to integrin a5b1; however, the mutation of D51 to E caused an 863-fold decrease in activity. Interestingly, our NMR structural analysis showed that there is no structural difference in their 3D structures. In contrast, we found dynamic differences in the R and D residues of their RGD motif. The values of R2 relaxation parameter for the residues R49 and D51 of Rho were 1.4- and 1.5-folds higher than those of the P48A mutant, resulting in the differences in Rex and te. The Rex values of R49 and D51 residues of Rho were 1.39 and 2.94 s-1, respectively. In contrast, no Rex values were obtained for P48A mutant. The te values of R49 and D51 residues of Rho were 0.11 and 0.11 ns, respectively. Their values were less than those of P48A mutant, which were 0.77 and 0.73 ns, respectively. These findings indicate that high te and no Rex of the P48A mutant result in its high activity in integrin a5b1. We also found that the R2 value of the E51 residue of the D51E mutant was 1.13-fold higher than that of Rho. The resulting Rex value of the E51 residue was 4.09 s-1, which is 1.4-fold higher than that of the D51 residue in Rho. Our finding also indicates that low Rex of D51 residue in Rho plays an important role in its activity. In structural study, we determined 3D structure of the G50L mutant, an integrin avb3-specific mutant, by NMR spectroscopy. Structural analysis of the G50L mutant showed that it has the same tertiary fold as Rho, except for the chemical property difference between G50 and L50. Our dynamics analysis showed that the S2 values of G50 in Rho and L50 in the G50L were 0.63 and 0.75, respectively. The te values of G50 in Rho and L50 in the G50L were 0.81 and 0.07 ns, respectively. In contrast, the L50 residue of G50L mutant has the Rex values of 0.48 s-1, and no Rex was found in the G50 residue of Rho. The Rex values of the residue D51 of Rho and the G50L mutant were 2.94 and 1.61 s-1, respectively. In this study, we showed that the dynamic properties and conformation of R and D residues in RXD motif play an important role in modulating its activity and selectivity for integrins. In order to study the effects of the elongated C-terminal regions on structure and function relationships of disintegrins, we expressed and determined 3D structures of three C-terminal mutants of Rho, including P48A/M52D/P53M-NPHKGPAT (DM-NPHKGPAT), P48A/M52N-NRFH (NP-NRFH), and P48A/M52W/P53N-NPWNG (WN-NPWNG) by NMR spectroscopy. Structural analysis of the P48A/M52W/P53N-NPWNG (WN-NPWNG) mutant showed that the D51 residue interacted with the elongated C-terminal WNG sequence, suggesting that the C-terminal WNG tail may serve as an additional recognition site for integrin. In conclusion, our findings indicate that the dynamics properties and conformations of the RGD motif and C-terminal region in disintegrins play important roles in interacting with integrins.

    中文摘要 I Abstract III 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 縮寫檢索表 XIII 儀器 XIV 第一章 緒論1 1-1 組合蛋白(integrin)之介紹1 1-2 去整合蛋白(disintegrin)之介紹2 1-3 馬來蝮蛇去組合蛋白(Rhodostomin,Rho)之介紹4 1-4 核磁共振(NMR)決定蛋白質三維立體結構與動力學之介紹5 1-5 研究動機與目標 6 第二章 材料與方法9 2-1 Rho及其突變蛋白的誘發9 2-1-1 培養液配方9 2-1-2 重組蛋白之表現與純化10 2-2 NMR樣品製備與光譜之測定15 2-2-1 NMR樣品製備15 2-2-2 NMR圖譜的測定15 2-3 以核磁共振研究Rho突變蛋白之三維結構15 2-3-1 原理15 2-3-2 NMR圖譜之判定16 2-3-3 限制條件的找尋18 2-3-4 蛋白質分子三維空間結構的計算19 2-4 以核磁共振研究Rho及其突變蛋白之骨架動力學22 2-4-1 15N弛緩速率的測量23 2-4-2 蛋白質內部動力學參數(Model-free參數)的計算24 2-4-3 利用tensor2軟體計算蛋白質骨架動力學Model-free參數25 第三章 實驗結果28 3-1 Rho突變蛋白PRLDMP (G50L)之NMR圖譜分析28 3-2 突變蛋白PRLDMP (G50L)立體結構之運算及比較30 3-3 Rho及其突變蛋白骨架動力學之分析結果及比較31 3-3-1 Rho與其突變蛋白ARGDMP (P48A)骨架動力學之分析結果及比較32 3-3-2 Rho與其突變蛋白PRGEMP (D51E)骨架動力學之分析結果及比較32 3-3-3 Rho與其突變蛋白PRLDMP (G50L)骨架動力學之分析結果及比較33 3-4 Rho C端延長之突變蛋白的三維NMR圖譜分析34 3-4-1 突變蛋白NP-YH與NP-NRFH之三維NMR圖譜分析35 3-4-2 突變蛋白DL-YH與DM-NPHKGPAT之三維NMR圖譜分析35 3-4-3 突變蛋白WN-YH與WN-NPWNG之三維NMR圖譜分析36 第四章 討論37 4-1 Rho及其突變蛋白之功能活性與結構的相關性37 4-1-1 突變蛋白PRLDMP (G50L)之功能活性與結構的相關性37 4-1-2 突變蛋白ARGDMP (P48A)及PRGEMP (D51E)之功能活性與結構的相關性 38 4-2 Rho及其突變蛋白之功能活性與蛋白質骨架動力學的相關性39 4-2-1 Rho與其突變蛋白ARGDMP (P48A)之功能活性與蛋白質骨架動力學的相關性39 4-2-2 Rho與其突變蛋白PRGEMP (D51E)之功能活性與蛋白質骨架動力學的相關性40 4-2-3 Rho與其突變蛋白PRLDMP (G50L)之功能活性與蛋白質骨架動力學的相關性41 4-3 探討去組合蛋白延長之C端對於去組合蛋白的結構與功能活性之相關性42 第五章 結論44 參考文獻 46 表 52 圖 57 自述 88

    Adair, B.D., Xiong, J.P., Maddock, C., Goodman, S.L., Arnaout, M.A. & Yeager, M. Three-dimensional EM structure of the ectodomain of integrin avb3 in a complex with fibronectin. The Journal of Cell Biology 168, 1109–1118 (2005)

    Adler, M., Lazarus, R.A., Dennis, M.S. & Wagner, G. Solution structure of kistrin, a potent platelet aggregation inhibitor and GP IIb-IIIa antagonist. Science 253, 445-448 (1991)

    Bilgrami, S., Yadav, S., Kaur, P., Sharma, S., Perbandt, M., Betzel, C. & Singh, T.P. Crystal Structure of the Disintegrin Heterodimer from Saw-Scaled Viper (Echis carinatus) at 1.9 Å Resolution. Biochemistry 44, 11058-11066 (2005)

    Bilgrami, S., Tomar, S., Yadav, S., Kaur, P., Kumar, J., Jabeen, T., Sharma, S. & Singh, T.P. Crystal Structure of Schistatin, a Disintegrin Homodimer from Saw-scaled Viper (Echis carinatus) at 2.5 Å Resolution. J. Mol. Biol. 341, 829–837 (2004)

    Brunger, A.T. X-PLOR Version 3.1: A system for X-ray crystallography and NMR. New Haven, CT: Yale University Press (1992)

    Calvete, J.J., Marcinkiewicz, C., Monléon D., Esteve, V., Celda, B., Jua´rez, P. & Sanz, L. Snake venom disintegrins: evolution of structure and function. Toxicon 45, 1063-1074 (2005)

    Calvete, J.J. Structure-Function Correlations of Snake Venom Disintegrins. Current Pharmaceutical Design 11, 829-835 (2005)

    Carr, P.A., Erickson, H.P. & Palmer III, A.G. Backbone dynamics of homologous fibronectin type III cell adhesion domains from fibronectin and tenascin. Structure 5, 949–959 (1997)

    Chang, H.H., Hu, S.T., Huang, T.F., Chen, S.H., Lee, Y.H. & Lo, S.J. Rhodostomin, an RGD-containing peptide expressed from a synthetic gene in Escherichia coli, facilitates the attachment of human hepatoma cells. Biochemical & Biophysical Research Communications 190, 242-249 (1993)

    Chen, Y., Suri, A.K., Kominons, D., Sanyal, G., Naylor, A.M., Pitzenberger, S.M., Garsky, V.M., Levy, R.M. & Baum, J. Three-dimensional structure of echistatin and dynamics of the active site. Journal of Biomolecular NMR 4, 307-324 (1994)

    Dennis, M.S., Carter, P., Lazarus, R.A. Binding interactions of kistrin with platelet glycoprotein IIb-IIIa: analysis by site-directed mutagenesis. Proteins 15, 312-21 (1993).

    Dosset, P., Hus, J.C., Blackledge, M. & Marion, D. Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data. Journal of Biomolecular NMR 16, 23-28 (2000)

    Erkki, R. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12, 697-715 (1996)

    Fujii, Y., Okuda, D., Fujimoto, Z., Horii, K., Morita, T. & Mizuno, H. Crystal structure of trimestatin, a disintegrin containing a cell adhesion recognition motif RGD. J. Mol. Biol. 332, 1115-1122 (2003)

    Gottschalk, K.E. & Kessler, H. The structures of integrins and integrin-ligand complexes: implications for drug design and signal transduction. Angew. Chem. Int. Ed. Engl. 41, 3767-3774 (2002)

    Gould, R.J., Polokoff, M.A., Friedman, P.A., Huang, T.F., Holt, J.C., Cook, J.J. & Niewiarowski, S. Disintegrins: A family of integrin inhibitory proteins from viper venoms. Proc. Soc. Exp. Biol. 195, 168-171 (1990)

    Guo, R.T., Chou, L.J., Chen, Y.C., Chen, C.Y., Pari, K., Jen, C.J., Lo, S.J., Huang, S.L., Lee, C.Y., Chang, T.W. & Chuang, W.J. Expression in Pichia pastoris and Characterization by Circular Dichroism and NMR of Rhodostomin. Proteins 43, 499-508 (2001)

    Hall, J.B. & Fushman, D. Characterization of the overall and local dynamics of a protein with intermediate rotational anisotropy: Differentiating between conformational exchange and anisotropic diffusion in the B3 domain of protein G. Journal of Biomolecular NMR 27 261–275 (2003)

    Huang, T.F., Sheu, J.R., Teng, C.M., Chen, S.W. & Liu, C.S. Triflavin, an antiplatelet Arg-Gly-Asp-containing peptide, is a specific antagonist of platelet membrane glycoprotein IIb-IIIa complex. Journal of Biochemistry 109, 328-334 (1991)
    Hynes, R.O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25 (1992)

    Ishima, R. & Torchia, D.A. Protein dynamics from NMR. Nat. Struct. Biol. 7, 740-743 (2000)

    Juliano, D., Wang, Y., Marcinkiewicz, C., Rosenthal, L.A., Stewart, G.J. & Niewiaroswki, S. Disintegrin interaction with avb3 integrin on human umbilical vein endothelial cells: expression of ligand-induced binding site on b3 subunit. Exp. Cell Res. 225, 132-142 (1996)

    Kay, L.E. Protein dynamics from NMR. Nat. Struct. Biol. NMR supplement, 513-517 (1998)

    Krezel, A.M., Ulmer, J.S., Wanger, G. & Lazarus, R.A. Recombinant decorsin: Dynamics of the RGD recognition site. Protein Science 9, 1428–1438 (2000)

    Leahy, D.J., Aukhil, I. & Erickson, H.P. 2.0 Å crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 84, 155-164 (1996)

    Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982)

    Marcinkiewicz, C. Functional Characteristic of Snake Venom Disintegrins: Potential Therapeutical Implication. Current Pharmaceutical Design 11, 815-827 (2005)

    Maruyana, K., Kawasaki, T., Sakai, Y., Taniuchi, Y., Shimizu, M., Kawashima, H. & Takenaka, T. Isolation and Amino Acid Sequence of Flavostatin, a Novel Disintegrin From the Venom of Trimeresurus flavoviridis. Peptides 18, 73–78 (1997)

    McLane, M.A., Sanchez, E.E., Wong, A., Paquette-Straub, C., Perez, J.C. Disintegrins. Curr Drug Targets Cardiovasc Haematol Disord. 4, 327-55 (2004)

    McLane, M.A., Marcinkiewicz, C., Vijay-Kumar, S., Wierzbicka-Patynowski, I., Niewiarowski, S. Viper venom disintegrins and related molecules. Proc. Soc. Exp. Biol. Med. 219, 109-19 (1998)

    McLane, M.A., Vijay-Kumar, S., Marcinkiewicz, C., Calvete, J.J. & Niewiarowski, S. Importance of the structure of the RGD-containing loop in the disintegrins echistatin and eristostatin for recognition of aIIbb3 and avb3 integrins. FEBS Lett. 391, 139-143 (1996)

    Monléon, D., Esteve, V., Kovacs, H., Calvete, J.J. & Celda, B. Conformation and concerted dynamics of the integrin-binding site and the C-terminal region of echistatin revealed by homonuclear NMR. Biochem. J. 387, 57–66 (2005)

    Niewiarowski, S., McLane, M.A., Kloczewiak, M. & Stewart, G.J. Disintegrins and other naturally occurring antagonists of platelet fibrinogen receptors. Semin. Hematol. 31, 289-300 (1994)

    Pfaff, M., McLane, M.A., Beviglia, L., Niewiarowski, S. & Timpl, R. Comparison of Disintegrins with limited variation in the RGD loop in their binding to purified integrins aIIbb3, avb3 and a5b1 and in cell adhesion inhibition. Cell Adhes. Commun. 2, 491-501 (1994)

    Pfaff, M., Tangemann, K., Muller, B., Gurrath, M., Muller, G., Kessler, H., Timpl, R. & Engel, J. Selective recognition of cyclic RGD peptides of NMR defined conformation by aIIbb3, avb3, and a5b1 integrins. J. Biol. Chem. 269, 20233-20238 (1994)

    Rahman, S., Aitken, A., Flynn, G., Formstone, C. & Savidge, G.F. Modulation of RGD sequence motifs regulates disintegrin recognition of aIIbb3 and a5b1 integrin complexes. Replacement of elegantin alanine-50 with proline, N-terminal to the RGD sequence, diminishes recognition of the a5b1 complex with restoration induced by Mn2+ cation. Biochem. J. 335, 247-257 (1998)

    Rouslahti, E. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12, 697-715 (1996)

    Saudek, V., Atkinson, R.A. & Pelton, J.T. Three-dimensional structure of echistatin, the smallest active RGD protein. Biochemistry 30, 7369-7372 (1991)

    Scarborough, R.M., Rose, J.W., Hsu, M.A., Philips, D.R., Fried, V.A., Campbell, A.M., Nannizzi, L. & Charo, I.F. Barbourin:A GPIIb-IIIa-specific integrin anatagonist from the venom of Sistrurus m. barbouri. J. Biol. Chem. 266, 9359-9362 (1991)

    Senn, H. & Klaus, W. The Nuclear Magnetic Resonance Solution Structure of Flavoridin, an Antagonist of the Platelet GP IIb-IIIa Receptor. J. Mol. Biol. 232, 907-925 (1993)

    Shimaoka, M., Takagi, J. & Springer, T.A. Conformational regulation of integrin structure and function. Annu. Rev. Biophys. Biomol. Struct. 31, 485–516 (2002)

    Siddiqi, A.R., Persson, B., Zaidi, Z.H., Jornvall, H. Characterization of two platelet aggregation inhibitor-like polypeptides from viper venom. Peptides 13, 1033-7 (1992)

    Shin, J., Hong, S.Y., Chung, K., Kang, I., Jang, Y., Kim, D.S. & Lee, W. Solution structure of a novel disintegrin, salmosin, from Agkistrondon halys venom. Biochemistry 42, 14408-14415 (2003)

    Takagi, J., Petre, B.M., Walz, T. & Springer, T.A. Global Conformational Rearrangements
    in Integrin Extracellular Domains in Outside-In and Inside-Out Signaling. Cell 110, 599-611 (2002)

    Tcheng, J.E., Harrington, R.A., Kottke, M.K., Kleinman, N., Ellis, S.G., Kereiakes, D.J., Mick, M.J., Navetta, F.I., Smith, J.E., Worley, S.J., Miller, J.A., Joseph, D.M., Sigmon, K.N., Kitt, M.M., Califf, R.M. & Topol, E.J. Multicenter , randomized, double-blind, placebo-controlled trial of the platelet integrin glycoprotein IIb/IIIa blocker integrin in elective coronary intervention. Circulation 91, 2151-2157 (1995)

    Tjandra, N., Feller, S.E., Pastor, R.W. & Bax, A. Rotational Diffusion Anisotropy of Human Ubiquitin from 15N NMR Relaxation. J. Am. Chem. Soc. 117, 12562-12566 (1995)

    Wand, A.J. Dynamic activation of protein function: A view emerging from NMR spectroscopy. Nat. Struct. Biol. 8, 926-931 (2001)

    Wierzbicka-Patynowski, I., Niewiarowski, S., Marcinkiewicz, C., Calvete, J.J., Marcinkiewicz, M.M. & McLane, M.A. Structural requirements of echistatin for the recognition of avb3 and a5b1 integrins. J. Biol. Chem. 274, 37809-37814 (1999)

    Xiao, T., Takagi, J., Coller, B.S., Wang, J.H. & Springer, T.A. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432, 59-67 (2004)

    Xiong, J.P., Stehle, T., Goodman, S.L. & Arnaout, M.A. Integrins, cations and ligands: making the connection. Journal of Thrombosis and Haemostasis 1, 1642–1654 (2003)

    Xiong, J.P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S.L., & Arnaout, M.A. Crystal structure of the extracellular segment of integrin avb3 in complex with an Arg-Gly-Asp ligand. Science 296, 151-155 (2002)

    Xiong, J.P., Stehle, T., Diefenbach, B., Zhang, R., Dunker, R., Scott, D.L., Joachimiak, A., Goodman, S.L., Arnaout, M.A. Crystal Structure of the Extracellular Segment of Integrin avb3. Science 294, 339-345 (2001)

    Yeh, C.H., Peng, H.C., Yang, R.S. & Huang, T.F. Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective avb3 blockade of endothelial cells. Mol. Pharmacol. 59, 1333-1342 (2001)

    周立哲, 馬來蝮蛇蛇毒蛋白及其D51E突變蛋白結構的核磁共振研究。國立成功大學生物化學研究所碩士論文, 2000。

    陳金榜, 蛋白質在水溶液中之結構-多維異核核磁共振之應用。科儀新知, 第十五卷, 第六期, 40-46, 1994。

    陳秋月, 利用Rhodostomin研究Integrin的辨識序列和研發製備胺基酸選擇性同位素標示蛋白的方法。國立成功大學生物化學研究所博士論文, 2005。

    陳彥青, 馬來蝮蛇蛇毒蛋白及其突變株的結構與動力學之研究。國立成功大學生物化學研究所碩士論文, 2001。

    許家豪, 含RGD序列蛋白在辨識組合蛋白上的結構與功能關係之研究。國立成功大學生物化學研究所碩士論文, 2003。

    劉祐禛, 利用馬來蝮蛇蛇毒蛋白突變株研究在辨識組合蛋白avb3和a5b1的結構決定因素。國立成功大學生物化學研究所碩士論文, 2004。

    黃忠智及余靖, 利用核磁共振光譜決定台灣眼鏡蛇蛇毒蛋白分子的水溶液中三度空間結構。科儀新知, 第十五卷, 第六期, 21-39, 1994。

    謝惠珠及余靖, 當今液態核磁共振儀在蛋白分子之重要發展及應用。科儀新知, 第二十二卷, 第五期, 45-57, 2001。

    下載圖示 校內:2009-07-04公開
    校外:2009-07-04公開
    QR CODE