簡易檢索 / 詳目顯示

研究生: 李宗欣
Lee, Tsung-Hsin
論文名稱: 基板覆多晶矽薄膜之特性研究
A Fabrication Study of Substrate Covered with Poly-Silicon Thin Film
指導教授: 周玉端
Chou, Yu-Tuan
崔兆棠
Choi, Siu-Tong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 74
中文關鍵詞: 表面粗糙度多晶矽薄膜
外文關鍵詞: orientation, XRD, AFM
相關次數: 點閱:99下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基板表面的粗糙度是影響多晶矽薄膜太陽能電池效率的一個重要因素,故探討基板表面粗糙度對多晶矽薄膜結核的影響,以及研究建立基板表面粗糙度的製程是必要的。過去的製程所建立基材表面的粗糙度,其尺度多為微米等級。本研究的實驗利用過度蝕刻製程將基板表面的粗糙度尺度下縮至奈米等級,並在不同表面粗糙度的二氧化矽基板上生長多晶矽薄膜,藉以研究多晶矽薄膜的生長狀況。實驗的結果顯示,利用過度蝕刻的製程的確是可以有效的提高基板表面的粗糙度,但是我們須更仔細控制實驗中的變因,以求得蝕刻時間與基板表面粗糙度的關係。而多晶矽生長在不同表面粗糙度的基板上時,其晶粒大小相當接近,結晶面向並不改變。

    The surface roughness of substrate is an important factor influencing the efficiency of poly-silicon thin-film solar cells. It is thus necessary to investigate the effect of surface roughness of substrate on nucleation of poly-silicon thin film and to establish a fabrication process of producing surface roughness of substrate. In the past, the surface roughness of substrate established was mostly in micron scale. In this experiment we utilized over-etching fabrication to establish surface roughness of substrate in nanometer scale. We investigated the different growth patterns of poly-silicon thin film when it is deposited on the silicon-dioxide substrates with different surface roughness. Experiment results indicate that it is effective to increase surface roughness of substrate by over-etching fabrication, but we have to control variables in experiment more carefully in order to get a relation between etching time and surface roughness. In addition, it was observed that grains of poly-silicon were of similar size and orientations remained the same while deposited on substrates with different roughness.

    中文摘要.......................................Ⅰ 英文摘要.......................................Ⅱ 誌謝...........................................Ⅲ 表目錄.........................................Ⅵ 圖目錄.........................................Ⅶ 第一章 緒論....................................1 1-1 前言.......................................1 1-2 研究動機...................................11 1-3 文獻回顧...................................12 1-4 研究方法...................................15 第二章 實驗裝置、原理與程序....................16 2-1 試片的製備.................................16 2-2 光阻塗佈...................................18 2-3 反應式離子蝕刻.............................20 2-4 AFM量測(Ⅰ)................................22 2-5 多晶矽薄膜沈積.............................23 2-6 AFM量測(Ⅱ)................................24 2-7 XRD量測....................................24 第三章 實驗結果................................25 3-1 以RIE 建立表面粗糙度.......................25 3-2 多晶矽薄膜生長狀態.........................27 3-3 XRD掃瞄結果................................28 第四章 結果討論................................30 4-1 建立基材表面粗糙度.........................30 4-2 多晶矽薄膜生長狀態-AFM結果.................34 4-3 多晶矽薄膜生長狀態-XRD結果.................34 第五章 結論與未來工作..........................36 參考文獻.......................................38 自述...........................................74

    [1] 經濟部能源委員會, 替代能源技術專輯—太陽電池, 1990.

    [2] 黃建昇, “結晶矽太陽電池發展現況”, 工業材料雜誌203: 150-155, 2003.

    [3] 廖彥任,郭明村, “太陽光電發電系統發展概況”, 工業材料雜誌182:151-158, 2002.

    [4] M. Wolf, “High efficiency solar cell”, 14th IEEE Photovoltaic Specialists Conference, 674, 1980.

    [5] M. Spitzer, J. Shewchun, E. S. Vera, J. J. Loferski, “Ultra-high efficiency thin film silicon p-n junction solar cells using reflecting surfaces”, 14th IEEE Photovoltaic Specialists Conference, 375, 1980.

    [6] K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, “Cost effective and high-performance thin film Si solar cell towards the 21st century”, Solar Energy Materials and Solar Cells 66: 117-125, 2001.

    [7] E. Manea, E. Budianu, M. Purica, D. Cristea, I. Cernica, R. Muller, V. Moagar Poladian, “Optimization of front surface texturing processes for high-efficiency silicon solar cells”, Solar Energy Materials and Solar Cells 87(1-4): 423-431, 2005.

    [8] D. M. Chapin, C. C. Fuller, G. L. Person, “A new Silicon p-n junction photocell for converting solar radiation into electrical power”, Applied Physics 25: 676-677, 1954.

    [9] M. B. Prince, “Silicon solar energy converters”, Applied Physics 26: 534-540, 1955.

    [10] K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, “Thin film Si solar cell fabricated at low temperature”, Journal of 39 Non-Crystalline Solids 266-269 (Part 2): 1082-1087, 2000.

    [11] T. Matsui, M. Tsukiji, H. Saika, T. Toyama, H. Okamoto, “Influence of substrate texture on microstructure and photovoltaic performances of thin film polycrystalline silicon solar cells”, Journal of Non-Crystalline Solids 299-302 (Part 2): 1152-1156, 2002.

    [12] L.-M. Lacroix, M. Lejeune, L. Ceriotti, M. Kormunda, T. Meziani, P. Colpo, F. Rossi, “Tuneable rough surfaces: A new approach for elaboration of superhydrophobic films”, Surface Science 592(1-3): 182-188, 2005.

    [13] M. Modreanu, M. Bercu, C. Cobianu, “Physical properties of polycrystalline silicon films related to LPCVD conditions” Thin Solid Film 383(1-2): 212-215, 2001.

    [14] M. Modreanu, M. Gartner, C. Cobianu, B. O'Looney, F. Murphy, “Optical properties of silicon thin films related to LPCVD growth condition”, Thin Solid Films 450(1): 105-110, 2004.

    [15] 汪建民, 材料分析, 中國材料科學學會, 新竹市, 11-101, 2005.

    [16] P. A. Denning, D. A. Stevenson, “Influence of substrate topography on the nucleation of diamond thin films”, Applied Physics Letter 59(13): 1562-1564, 1991.

    [16] ICDD (http://www.icdd.com/)

    下載圖示 校內:立即公開
    校外:2006-08-25公開
    QR CODE