簡易檢索 / 詳目顯示

研究生: 劉兆恩
Liu, Chao-En
論文名稱: 合成金屬矽酸鹽孔洞材料應用於硫化物偵測及鋰離子電池陽極材料之研究
Synthesis of Porous Metal Silicates for Application in Sulfide Detection and as Anode Material for Lithium-Ion Battery
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 104
中文關鍵詞: 金屬矽酸鹽硫化物螢光粉綠色化學結晶矽陽極材料鋰離子電池
外文關鍵詞: metal silicate, sulfide, phosphor, silicon, anode materials, lithium-ion battery
相關次數: 點閱:121下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽酸鹽孔洞材料具有高表面積、高熱穩定性、穩定的層狀結構和可調的孔徑大小等特質,利於作為催化劑、吸附劑、光學元件及陽極材料。本研究主要以綠色化學的角度,探討兩種不同金屬矽酸鹽材料(矽酸鋅和矽酸鎳)的合成及其於水中硫化物偵測和鋰離子電池陽極之應用。

    第一部分: 以共沉澱法合成zinc silicate:Eu3+螢光粉與硫化物淬熄反應表現
    於工業上,硫化物常以反應物或副產物的形式存在。由於硫化物與金屬具有強烈的活性,常造成反應設備和管線上的腐蝕與破壞,因此偵測水中硫化物的議題日益重要。據研究發現,光學材料於硫化物偵測銪相當高的靈敏度。傳統上,會以甲基藍作為硫化物的偵測器,但由於其前驅物具有致癌性,且此種方法並不具有再生性,所以本研究以較為環保原料及簡易的方法合成出以矽酸鋅為主體晶格、銪元素為發光基團的紅光螢光粉zinc silicate:Eu3+。利用此螢光粉對於水中特定陰離子產生螢光淬熄反應的特性,有效率的偵測水中硫化物。總體而言,本研究合成出的zinc silicate:Eu3+螢光粉具有環保、合成簡單、硫化物選擇性佳、靈敏度高、熱穩定性和再現性良好的優點。

    第二部分: 以多層塗布法合成nickel silicate陽極材料與其電化學表現
    本研究從綠色化學的概念出發,嘗試以天然氣發電廠的工業廢棄物作為二氧化矽源(Si/SiO2),以過渡金屬鎳作為金屬源合成金屬矽酸鎳陽極材料。金屬矽酸鹽穩定的層狀結構可使材料中的結晶矽不至於因為充放電過程中過度的體積膨脹而導致材料結構崩塌,使其成為鋰離子電池含矽的優良陽極材料。同時,本研究以多層塗布法,重複將矽酸鎳回加到金屬源溶液中,除了可以突破共沉澱法金屬擔載量的限制,且可以合成出外層有多層Ni(OH)2的矽酸鎳材料。此多層結構可有效提升整體的電容值,使鋰離子電池得到比共沉澱法合成的矽酸鎳高約200 mAhg-1的電容值。綜上所述,利用多層塗布法,以工業廢料合成的矽酸鎳陽極材料展現了高電容量(1128 mAhg-1),且賦予工業廢棄物一個二次利用的價值。

    Mesoporous metal silicate materials with a high surface area, high thermal stability, stable layered structures, and a tunable pore size have many potential applications as catalysts, adsorbents, optical devices, and anode materials. This study synthesized two mesoporous metal silicate materials (zinc silicate and nickel silicate) for sulfide sensing and lithium-ion battery (LIB) applications, respectively.
    The study commenced by developing an environmentally friendly sulfide sensor based on the fluorescence emissions of zinc silicate:Eu3+ phosphors. The optimal sensing performance was obtained by adjusting the pH value, Zn/Si ratio, and molar percentage of Eu3+ ions in the synthesis process. It was found that a reaction condition of pH 6 yielded a linear sensing performance for sulfide concentrations in the range of 3.12×10-6 to 3.12×10-5 M with a detection limit of 1.8×10-7 M and a Stern-Volmer constant (KSV) of 3.1×104 M-1. Overall, the zinc silicate:Eu3+ sulfide sensor showed many favorable properties, including nontoxicity, a simple synthesis process, good selectively, good sensitivity, good thermal stability, and high reproducibility.
    The stable layered structure and high thermal stability of metal silicates render them an ideal anode material for LIBs. Accordingly, adopting the basic concepts of green chemistry, this study used industrial waste obtained from a gas generation plant as the silica source (Si/SiO2) for the synthesis of metal silicate based on nickel as the metal source. The electrochemical test results showed that the nickel silicate material prepared with a Ni/Si ratio of 1.5 exhibited a high initial capacity of 1128 mAhg-1 at 50 mAg-1 over the voltage range of 0.01 V ~ 2.5 V when used as the anode material in a LIB. Moreover, the capacity of the LIB was increased by 200 mAhg-1 by repeatedly adding the nickel silicate back to the metal source solution during the synthesis process and adjusting the pH to 9.0 each time. Thus, the feasibility of the proposed green synthesis route for the preparation of a high-performance nickel silicate anode material for LIBs was confirmed.

    第一章 緒論1 1.1頁矽酸鹽(phyllosilicates)的簡介1 1.2孔洞材料1 1.3螢光材料基本介紹2 1.3.1發光原理3 1.3.2能量轉換機構4 1.3.3濃度淬熄反應5 1.3.4Zn2SiO4介紹6 1.4Stern-Volmer方程式7 1.5偵測極限( Limit of Detection )8 1.6硫化氫介紹9 1.6.1H2S之來源9 1.6.2H2S之危害9 1.7鋰離子電池的介紹9 1.7.1鋰離子電池簡介9 1.7.2裝置構造10 1.7.3工作原理11 1.7.4SEI膜12 1.8負極材料12 1.8.1矽酸鹽負極材料12 1.8.2Si負極材料13 第二章 實驗步驟與儀器14 2.1實驗藥品14 2.2剝蝕法製備zinc-silicate孔洞材料15 2.3螯合法製備zinc-silicate:Eu3+紅色螢光粉15 2.4共沉澱法製備zinc-silicate:Eu3+紅色螢光粉16 2.4.1實驗流程-共沉澱法製備zinc-silicate:Eu3+紅色螢光粉16 2.4.2實驗流程-水中硫化物(陰離子)之偵測17 2.5多重塗佈法製備含結晶矽nickel-silicate中孔洞材料18 2.5.1實驗流程-多重塗佈法製備含結晶矽nickel-silicat18 2.5.2應用-電極片製作19 2.5.3應用-鈕扣式電池之組裝20 2.6鈕扣型鋰離子電池的檢測20 2.6.1循環壽命測試20 2.6.2不同充放電速率測試21 2.6.3循環伏安法21 2.7儀器設備22 2.7.1氮氣等溫吸附-脫附儀(Nitrogen Adsorption-Desorption Isotherm)22 2.7.2掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)24 2.7.3穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)25 2.7.4 X-射線繞射光譜(X-Ray Diffraction, XRD)26 2.7.5螢光光譜儀27 2.7.6熱重分析儀(Thermal Gravimetric Analysis, TGA)27 第三章 製備高比表面積矽酸鋅螢光粉應用於硫化物檢測29 3.1研究動機與目的29 3.2以共沉澱法製備zinc silicate:Eu3+ 紅色螢光粉30 3.2.1反應系統pH值對螢光粉亮度的影響30 3.2.2 改變Zn/Si莫耳比例對螢光粉結晶性及螢光強度的影響32 3.2.3改變鍛燒溫度對螢光粉亮度的影響34 3.2.4不同Eu3+ / Zn2+莫耳比例對螢光粉亮度的影響36 3.3應用-高比表面積紅色螢光粉應用於硫化物檢測38 3.3.1材料性質鑑定及比表面積對螢光淬熄反應之影響38 3.3.2螢光淬熄反應pH值影響&反應機制推導41 3.3.3螢光粉對二次水中陰離子之選擇性45 3.3.4不同Eu3+ / Zn2+莫耳比例對螢光淬熄反應之影響45 3.3.5代入Stern-Volmer equation比較不同激發波長對於硫化物之淬熄常數( KSV )的影響47 3.3.6螢光粉對於二次水中硫化物之偵測極限( CLOD )49 3.3.7螢光粉中孔洞材料之再現性52 3.3.8螢光粉材料之可再生結果54 3.4以螯合法製備zinc silicate : Eu3+ 紅色螢光粉56 3.4.1以剝蝕法製備zinc silicate應用於螯合法螢光粉之主體晶格57 3.4.2應用-比較螯合法及共沉澱法製備之螢光粉對於硫化物之螢光淬熄反應62 第四章 以工業廢棄氧化矽源製備nickel-silicate應用於鋰離子電池陽極67 4.1研究動機與目的67 4.2以多重塗佈法製備含結晶矽nickel-silicate中孔洞材料68 4.2.1多重塗布法製備nickel silicate之材料性質鑑定及反應機構推導68 4.2.2 反應系統pH值對nickel-silicate的影響72 4.2.3改變水熱溫度及水熱時間對nickel-silicate結晶度的影響75 4.2.4改變Ni / Si比例對nickel-silicate的影響77 4.3應用-以nickel-silicate複合材料應用於鋰離子電池陽極79 4.3.1探討鋰離子電池陽極充放電反應機構79 4.3.2不同Ni / Si莫耳比例對鋰離子電池的影響84 4.3.3探討共沉澱法及多層塗布法合成之nickel silicate對鋰離子電池電容及循環壽命的影響87 4.3.4探討材料結晶度對鋰離子電池電容的影響90 4.3.5探討材料中結晶矽對鋰離子電池電容的影響92 4.3.6探討鍛燒使nickel-silicate轉相對鋰離子電池之電容值及循環壽命的影響 94 第五章 結論97 第六章 參考文獻99

    1. Grabmaier, B., Luminescent materials. Springer Verlag: 1994.
    2. Blasse, G.; Grabmaier, B., A general introduction to luminescent materials. In Luminescent materials, Springer: 1994; pp 1-9.
    3. Lin, Y.-C.; Karlsson, M.; Bettinelli, M., Inorganic phosphor materials for lighting. Photoluminescent Materials and Electroluminescent Devices 2017, 309-355.
    4. Chandrinou, C.; Boukos, N.; Stogios, C.; Travlos, A., PL study of oxygen defect formation in ZnO nanorods. Microelectronics Journal 2009, 40 (2), 296-298.
    5. Mooradian, A., Photoluminescence of metals. Physical Review Letters 1969, 22 (5), 185.
    6. Shkrob, I. A.; Sauer, M. C., Hole scavenging and photo-stimulated recombination of electron− hole pairs in aqueous TiO2 nanoparticles. The Journal of Physical Chemistry B 2004, 108 (33), 12497-12511.
    7. Kaplan, I. G., The Pauli Exclusion Principle: Origin, Verifications, and Applications. John Wiley & Sons: 2017.
    8. Bang, H.; Morishima, S.; Sawahata, J.; Seo, J.; Takiguchi, M.; Tsunemi, M.; Akimoto, K.; Nomura, M., Concentration quenching of Eu-related luminescence in Eu-doped GaN. Applied physics letters 2004, 85 (2), 227-229.
    9. Brugger, J.; McPhail, D.; Wallace, M.; Waters, J., Formation of willemite in hydrothermal environments. Economic Geology 2003, 98 (4), 819-835.
    10. Ropp, R. C., Luminescence and the solid state. elsevier: 2013.
    11. Lukić, S.; Petrović, D. M.; Dramićanin, M.; Mitrić, M.; Ðačanin, L., Optical and structural properties of Zn2SiO4: Mn2+ green phosphor nanoparticles obtained by a polymer-assisted sol–gel method. Scripta Materialia 2008, 58 (8), 655-658.
    12. Kundu, N.; Ghosh, R. K.; Kar, T.; Bhattacharyya, M.; Basak, P., ILLUSTRATION OF FLUORESCENCE QUENCHING MECHANISM OF HEME PROTEINS USING STERN VOLMER QUENCHING SYSTEM WITH DETERMINATION OF POSITIONING OF TRYPTOPHAN RESIDUES. Journal of Global Biosciences 2016, 5 (9), 4579-4584.
    13. Gopich, I.; Szabo, A., Fluorophore− Quencher Distance Correlation Functions from Single-Molecule Photon Arrival Trajectories. The Journal of Physical Chemistry B 2005, 109 (14), 6845-6848.
    14. Wang, C.; Chu, X.; Wu, M., Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods. Sensors and Actuators B: Chemical 2006, 113 (1), 320-323.
    15. Cho, J.; Kim, Y. J.; Park, B., Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chemistry of Materials 2000, 12 (12), 3788-3791.
    16. Scrosati, B., Lithium rocking chair batteries: an old concept? Journal of The Electrochemical Society 1992, 139 (10), 2776.
    17. Tarascon, J.-M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group 2011, 171-179.
    18. 賴冠杰, 鄧., 銳鈦礦二氧化鈦奈米管在鋰離子電池陽極的應用. 2015.
    19. Norberg, A. N.; Wagner, N. P.; Kaland, H.; Vullum-Bruer, F.; Svensson, A. M., Silica from diatom frustules as anode material for Li-ion batteries. RSC Advances 2019, 9 (70), 41228-41239.
    20. Gui, C.-X.; Hao, S.-M.; Liu, Y.; Qu, J.; Yang, C.; Yu, Y.; Wang, Q.-Q.; Yu, Z.-Z., Carbon nanotube@ layered nickel silicate coaxial nanocables as excellent anode materials for lithium and sodium storage. Journal of Materials Chemistry A 2015, 3 (32), 16551-16559.
    21. Cheng, W.; Rechberger, F.; Ilari, G.; Ma, H.; Lin, W.-I.; Niederberger, M., Amorphous cobalt silicate nanobelts@ carbon composites as a stable anode material for lithium ion batteries. Chemical science 2015, 6 (12), 6908-6915.
    22. Qu, J.; Yan, Y.; Yin, Y.-X.; Guo, Y.-G.; Song, W.-G., Improving the Li-ion storage performance of layered zinc silicate through the interlayer carbon and reduced graphene oxide networks. ACS applied materials & interfaces 2013, 5 (12), 5777-5782.
    23. Kaspar, J.; Graczyk-Zajac, M.; Lauterbach, S.; Kleebe, H.-J.; Riedel, R., Silicon oxycarbide/nano-silicon composite anodes for Li-ion batteries: Considerable influence of nano-crystalline vs. nano-amorphous silicon embedment on the electrochemical properties. Journal of Power Sources 2014, 269, 164-172.
    24. Donohue, M. D.; Aranovich, G. L., Classification of Gibbs adsorption isotherms. Advances in Colloid and Interface Science 1998, 76, 137-152.
    25. Chang, S. S.; Clair, B.; Ruelle, J.; Beauchene, J.; Di Renzo, F.; Quignard, F.; Zhao, G. J.; Yamamoto, H.; Gril, J., Mesoporosity as a new parameter for understanding tension stress generation in trees. J Exp Bot 2009, 60 (11), 3023-30.
    26. Inkson, B. J., Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods, 2016; pp 17-43.
    27. Gore, A. H.; Vatre, S. B.; Anbhule, P. V.; Han, S.-H.; Patil, S. R.; Kolekar, G. B., Direct detection of sulfide ions [S 2−] in aqueous media based on fluorescence quenching of functionalized CdS QDs at trace levels: analytical applications to environmental analysis. Analyst 2013, 138 (5), 1329-1333.
    28. Eroğlu, A. E.; Volkan, M.; Ataman, O. Y., Fiber optic sensors using novel substrates for hydrogen sulfide determination by solid surface fluorescence. Talanta 2000, 53 (1), 89-101.
    29. Choi, M. M., Fluorimetric optode membrane for sulfide detection. Analyst 1998, 123 (7), 1631-1634.
    30. Zhou, T.; Wang, N.; Li, C.; Yuan, H.; Xiao, D., Sulfide sensor based on room-temperature phosphorescence of PbO/SiO2 nanocomposite. Analytical chemistry 2010, 82 (5), 1705-1711.
    31. Eaton, A. D.; Clesceri, L. S.; Rice, E. W.; Greenberg, A. E.; Franson, M. A. H., Standard methods for the examination of water and wastewater. American public health association 2005, 1015.
    32. Prodromidis, M. I.; Veltsistas, P. G.; Karayannis, M. I., Electrochemical study of chemically modified and screen-printed graphite electrodes with [SbVO (CHL) 2] Hex. Application for the selective determination of sulfide. Analytical chemistry 2000, 72 (17), 3995-4002.
    33. Lawrence, N. S.; Davis, J.; Compton, R. G., Analytical strategies for the detection of sulfide: a review. Talanta 2000, 52 (5), 771-784.
    34. Tang, D.; Santschi, P. H., Sensitive determination of dissolved sulfide in estuarine water by solid-phase extraction and high-performance liquid chromatography of methylene blue. Journal of Chromatography A 2000, 883 (1-2), 305-309.
    35. Takesue, M.; Hayashi, H.; Smith Jr, R. L., Thermal and chemical methods for producing zinc silicate (willemite): a review. Progress in Crystal Growth and characterization of Materials 2009, 55 (3-4), 98-124.
    36. Albrecht, T. W. J.; Addai-Mensah, J.; Fornasiero, D., Effect of pH, concentration and temperature on copper and zinc hydroxide formation/precipitation in solution. Chemeca 2011: Engineering a Better World: Sydney Hilton Hotel, NSW, Australia, 18-21 September 2011 2011, 2100.
    37. Laudise, R.; Ballman, A., Hydrothermal synthesis of zinc oxide and zinc sulfide1. The Journal of Physical Chemistry 1960, 64 (5), 688-691.
    38. Jaafar, S. H.; Zaid, M. H. M.; Matori, K. A.; Aziz, S. H. A.; Mohamed Kamari, H.; Honda, S.; Iwamoto, Y., Influence of Calcination Temperature on Crystal Growth and Optical Characteristics of Eu3+ Doped ZnO/Zn2SiO4 Composites Fabricated via Simple Thermal Treatment Method. Crystals 2021, 11 (2).
    39. Singh, B.; Parchur, A.; Ningthoujam, R.; Ansari, A.; Singh, P.; Rai, S., Enhanced photoluminescence in CaMoO 4: Eu 3+ by Gd 3+ co-doping. Dalton transactions 2014, 43 (12), 4779-4789.
    40. Buddhudu, S.; Zhang, H. X.; Kam, C. H.; Ng, S. L.; Ooi, B. S.; Lam, Y. L.; Chan, Y. C.; Zhou, Y.; Que, W.; Wong, T. K. S. In Green and red luminescence in Tb3+ and Eu3+: Zn2SiO4 powders, Rare-Earth-Doped Materials and Devices IV, International Society for Optics and Photonics: 2000; pp 68-74.
    41. Wang, N.; Zhou, T.; Wang, J.; Yuan, H.; Xiao, D., Sulfide sensor based on the room-temperature phosphorescence of ZnO/SiO 2 nanocomposite. Analyst 2010, 135 (9), 2386-2393.
    42. Cramb, D.; Beck, S., Fluorescence quenching mechanisms in micelles: the effect of high quencher concentration. Journal of Photochemistry and Photobiology A: Chemistry 2000, 134 (1-2), 87-95.
    43. Holmer, M.; Hasler-Sheetal, H., Sulfide intrusion in seagrasses assessed by stable sulfur isotopes—a synthesis of current results. Frontiers in Marine Science 2014, 1, 64.
    44. Hussain, M.; Abbas, N.; Fino, D.; Russo, N., Novel mesoporous silica supported ZnO adsorbents for the desulphurization of biogas at low temperatures. Chemical Engineering Journal 2012, 188, 222-232.
    45. Nguyen-Thanh, D.; Bandosz, T. J., Effect of transition-metal cations on the adsorption of H2S in modified pillared clays. The Journal of Physical Chemistry B 2003, 107 (24), 5812-5817.
    46. Montes, D.; Tocuyo, E.; González, E.; Rodríguez, D.; Solano, R.; Atencio, R.; Ramos, M. A.; Moronta, A., Reactive H2S chemisorption on mesoporous silica molecular sieve-supported CuO or ZnO. Microporous and mesoporous materials 2013, 168, 111-120.
    47. Weng, H.; Yan, B., A Eu (III) doped metal-organic framework conjugated with fluorescein-labeled single-stranded DNA for detection of Cu (II) and sulfide. Analytica chimica acta 2017, 988, 89-95.
    48. Liu, S.; Tian, J.; Wang, L.; Zhang, Y.; Qin, X.; Luo, Y.; Asiri, A. M.; Al‐Youbi, A. O.; Sun, X., Hydrothermal treatment of grass: a low‐cost, green route to nitrogen‐doped, carbon‐rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label‐free detection of Cu (II) ions. Advanced materials 2012, 24 (15), 2037-2041.
    49. Hao, Z.; Song, X.; Zhu, M.; Meng, X.; Zhao, S.; Su, S.; Yang, W.; Song, S.; Zhang, H., One-dimensional channel-structured Eu-MOF for sensing small organic molecules and Cu 2+ ion. Journal of Materials Chemistry A 2013, 1 (36), 11043-11050.
    50. Lian, X.; Yan, B., Novel core–shell structure microspheres based on lanthanide complexes for white-light emission and fluorescence sensing. Dalton Transactions 2016, 45 (6), 2666-2673.
    51. Wang, Y.; Hu, J.; Zhuang, Q.; Ni, Y., Label-free fluorescence sensing of lead (II) ions and sulfide ions based on luminescent molybdenum disulfide nanosheets. ACS Sustainable Chemistry & Engineering 2016, 4 (5), 2535-2541.
    52. Wang, M.-Q.; Li, K.; Hou, J.-T.; Wu, M.-Y.; Huang, Z.; Yu, X.-Q., BINOL-based fluorescent sensor for recognition of Cu (II) and sulfide anion in water. The Journal of organic chemistry 2012, 77 (18), 8350-8354.
    53. 中華民國環保署, 水中硫化物檢測方法-甲烯藍/分光光度計法. 102.
    54. Moest, R., Hydrogen sulfide determination by the methylene blue method. Analytical Chemistry 1975, 47 (7), 1204-1205.
    55. Reese, B. K.; Finneran, D. W.; Mills, H. J.; Zhu, M.-X.; Morse, J. W., Examination and refinement of the determination of aqueous hydrogen sulfide by the methylene blue method. Aquatic geochemistry 2011, 17 (4), 567-582.
    56. Lawrence, N. S.; Davis, J.; Jiang, L.; Jones, T. G.; Davies, S. N.; Compton, R. G., The electrochemical analog of the methylene blue reaction: a novel amperometric approach to the detection of hydrogen sulfide. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 2000, 12 (18), 1453-1460.
    57. Nasi, L.; Calestani, D.; Besagni, T.; Ferro, P.; Fabbri, F.; Licci, F.; Mosca, R., ZnS and ZnO nanosheets from ZnS (en) 0.5 precursor: nanoscale structure and photocatalytic properties. The Journal of Physical Chemistry C 2012, 116 (12), 6960-6965.
    58. Degen, A.; Kosec, M., Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. Journal of the European Ceramic Society 2000, 20 (6), 667-673.
    59. Feng, K.; Li, M.; Liu, W.; Kashkooli, A. G.; Xiao, X.; Cai, M.; Chen, Z., Silicon‐based anodes for lithium‐ion batteries: from fundamentals to practical applications. Small 2018, 14 (8), 1702737.
    60. 連映媛, 陳立輝., Si-Ag薄膜與粉末鋰離子二次電池用負極材料組織特性與充放電機制探討. 2014.
    61. 張以潔, 林弘萍, 氧化矽孔洞材料與金屬矽酸鹽複合材料之合成與應用. 2017.
    62. Fu, G.; Hu, Z.; Xie, L.; Jin, X.; Xie, Y.-l.; Wang, Y.-x.; Zhang, Z.; Yang, Y.; Wu, H., Electrodeposition of nickel hydroxide films on nickel foil and its electrochemical performances for supercapacitor. Int. J. Electrochem. Sci 2009, 4 (8), 1052.
    63. Ramesh, T. N., X-ray diffraction studies on the thermal decomposition mechanism of nickel hydroxide. The Journal of Physical Chemistry B 2009, 113 (39), 13014-13017.
    64. Fang, L.; Li, W.; Chen, H.; Xiao, F.; Huang, L.; Holm, P. E.; Hansen, H. C. B.; Wang, D., Synergistic effect of humic and fulvic acids on Ni removal by the calcined Mg/Al layered double hydroxide. RSC advances 2015, 5 (24), 18866-18874.
    65. Volochko, A.; Podbolotov, K.; Zhukova, A., Preparation of porous ceramic materials based on wollastonite using silicon-containing components. Refractories and Industrial Ceramics 2011, 52 (3), 186-190.
    66. Miranda, M.; Sasaki, J., The limit of application of the Scherrer equation. Acta Crystallographica Section A: Foundations and Advances 2018, 74 (1), 54-65.
    67. Tang, C.; Sheng, J.; Xu, C.; Khajehbashi, S.; Wang, X.; Hu, P.; Wei, X.; Wei, Q.; Zhou, L.; Mai, L., Facile synthesis of reduced graphene oxide wrapped nickel silicate hierarchical hollow spheres for long-life lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (38), 19427-19432.
    68. Cheng, M.-Y.; Ye, Y.-S.; Chiu, T.-M.; Pan, C.-J.; Hwang, B.-J., Size effect of nickel oxide for lithium ion battery anode. Journal of Power Sources 2014, 253, 27-34.
    69. Wang, X.; Qiao, L.; Sun, X.; Li, X.; Hu, D.; Zhang, Q.; He, D., Mesoporous NiO nanosheet networks as high performance anodes for Li ion batteries. Journal of Materials Chemistry A 2013, 1 (13), 4173-4176.
    70. Sakabe, J.; Ohta, N.; Ohnishi, T.; Mitsuishi, K.; Takada, K., Porous amorphous silicon film anodes for high-capacity and stable all-solid-state lithium batteries. Communications Chemistry 2018, 1 (1), 1-9.
    71. Yang, Y.; Jin, R.; Song, S.; Xing, Y., Synthesis of flower-like nickel oxide/nickel silicate nanocomposites and their enhanced electrochemical performance as anode materials for lithium batteries. Materials Letters 2013, 93, 5-8.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE