簡易檢索 / 詳目顯示

研究生: 阮亮華
Juan, Liang-Hua
論文名稱: 以靜態及動態模式進行瓩級史特靈引擎之應力分析
Stress Analysis for 1-kW Stirling Engine by Static and Dynamic Model
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 77
中文關鍵詞: 史特靈引擎應力分析輸出軸功
外文關鍵詞: Stirling engine, Stress analysis, Shaft power
相關次數: 點閱:152下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究建立β型史特靈引擎之靜態模式與動態模式,針對其結構進行三維之數值模擬與參數分析,期能透過模擬結果預測結構之安全性,並改良幾何尺寸使其安全性提高,避免構件於實際操作中損壞。靜態模式考慮引擎實際運轉中最危險之操作條件,模擬結構受到高溫高壓負載之情況,動態模式則計算引擎受到壓力負載與飛輪定轉速之循環狀態。根據等效應力模擬結果,針對移氣器、菱形驅動機構連桿及動力活塞之幾何尺寸進行參數分析,達到避免構件損壞或構件輕量化之目的,並利用修正後之幾何尺寸進行極限操作條件之參數分析,求得引擎構件可承受之最高溫度與填充壓力,同時,透過動態模式可預測於不同加熱端溫度、填充壓力及飛輪轉速下引擎之輸出軸功,並進一步與實驗結果作比對。

    In this study, numerical simulation of mechanical strength of a 1-kW Stirling engine is performed. Three dimensional, static and dynamic numerical models for the whole engine are built based on the frame work of a commercial software, ANSYS ver. 15.0. The emphasis of this study is to make sure that all the parts of the engine are safe during operation so as to prevent these parts of the engine from damage particularly under very high operating pressures and temperature. Therefore, predictions of von Mises stress in all the components as well as the moment with the flywheel at a rotational speed of 1000 rpm are carried out. Parametric study is also evaluated on the von Mises stress distributions in all the major parts of the engine. The numerical predictions are then compared with the experimental data for the prototype Stirling engine for verification.

    摘要 I ABSTRACT II 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 符號索引 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 文獻探討 2 1.2.1 史特靈引擎 2 1.2.2 聚焦式太陽熱能發電系統 4 1.3 有限元素法 5 1.4 研究目標 7 1.5 論文架構 8 第二章 理論與數值方法 9 2.1 靜態模式分析 9 2.1.1 熱傳學理論 9 2.1.2 線性結構理論 10 2.1.3 多孔性材料理論 13 2.2 動態模式分析 14 2.2.1 彈性力學理論 14 2.2.2 輸出軸功 18 第三章 數值模擬與參數分析 19 3.1 幾何模型 19 3.2 網格系統 21 3.3 邊界條件 22 3.3.1 靜態模式之熱模型 22 3.3.2 靜態模式之結構模型 23 3.3.3 動態模式之結構模型 24 3.4 參數分析 25 第四章 結果與討論 27 4.1 靜態模式分析 27 4.1.1 溫度分佈結果 27 4.1.2 總變形量分佈結果 28 4.1.3 等效應力分佈結果 28 4.1.4 移氣器厚度修整分析 30 4.1.5 菱形驅動機構連桿寬度與厚度修整分析 32 4.1.6 加熱端溫度與填充壓力對等效應力之影響 33 4.2 動態模式分析 34 4.2.1 等效應力隨時間之變化 34 4.2.2 靜態與動態模式之結果比較 36 4.2.3 動力活塞底面厚度之修整分析 37 4.2.4 極限操作條件之參數分析 37 4.2.5 加熱端溫度與填充壓力對引擎性能之影響 38 4.2.6 引擎轉速對性能之影響 39 第五章 結論 40 參考文獻 42

    [1] 徐天佑、曾鴻陽,“台灣地區有關太陽能日照量之環境時空因素研究探討,”環境教育學刊,第6期,頁21-32,2007。
    [2] 邵承矩,能源應用,東華書局,1987。
    [3] R. Darling and K. Strong, Stirling and hot air engine, The crowood press Ltd., 2005.
    [4] G. Walker, Stirling Engine, Oxford university press, New York, 1980.
    [5] J. R. Senft, Ringbom Striling engines, Oxford university, USA, 1993.
    [6] C. M. Hargreaves, The Phillips Stirling engine, Elsevier, New York, June 1991.
    [7] C. D. West, Principles and applications of Stirling engine, Van Nostrand Reinhold, New York, 1986.
    [8] B. Ross, “Status of the emerging technology of Stirling machines,” IEEE AES system magazine, 1995.
    [9] M.E.H. Tijani, J.C.H. Zeegers, A.T.A.M. de Waele, “Construction and performance of a thermoacoustic refrigerator,” Cryogenics, Vol. 42, pp. 59–66, 2002.
    [10] A. Hawkes, M. Leach, “Solid oxide fuel cell systems for residential micro-combined heat and power in the UK: key economic drivers”, J Power Sources, Vol. 149, pp. 72–83, 2005.
    [11] A. J. Organ, Thermodynamics and gas dynamics of the Stirling cycle machine, Cambridge university press, 1992.
    [12] W. M. Moscrip, Mechanical arrangements for Stirling cycle reciprocating thermal machines, US Patent No.4413474 A, 1983.
    [13] R. J. Meijer, The Philips Stirling thermal engine, Technische Hogeschool Delft, 1960.
    [14] M. Abbas, B. Boumeddane, N. Said, A. Chikouche, “Dish Stirling technology: a 100MW solar power plant using hydrogen for Algeria,
    ” International journal of hydrogen energy, Vol. 36, pp. 4305-4317, 2011.
    [15] R. Dracker, P. de Laquil, “Progress commercializing solar-eletric power system,” United State: Annual reviewer Inc., pp. 371-402, 1996.
    [16] W. Men, R. Matthew, S. Aldo, “Three-dimensional optical and thermal numerical model of solar tubular receivers in parabolic trough concentrators,” ASME J. Sol. Energy, Vol. 134, 2012.
    [17] G. Joachim, H. Bernhard, S. Stefan, S. Markus, B. Reiner, T. Edgar, B. Kathrin, I. David, R. Christian, “Solar concentrating system using small mirro arrays,” ASME J. Sol. Energy Eng., Vol. 132, pp. 1-4, 2010.
    [18] J. F. Besseling, “Non-linear analysis of structures by the finite element method as a supplement to a linear analysis,” Computer methods in applied mechanics and engineering, Vol. 3, pp. 173-194, 1974.
    [19] H. J. Melosh, A. Raefsky, “A simple and efficient method for introducing faults into finite element computations,” Bulletin of the seismological society of America, Vol. 71, pp. 1931-1400.
    [20] ANSYS mechanical user’s guide: ANSYS Release 15.0, ANSYS Inc., 2014.
    [21] C. S. Desai, J. F. Abel, Introduction to the finite element method: A numerical method for engineering analysis, van nostrand reinhold, New York, 1972.
    [22] R. A. Ackermann, Cryogenic regenerative heat exchangers: Springer, 1997.
    [23] Y. F. Chen, C. H. Cheng, “Numerical simulation of thermal and flow fields in 1-kw beta-type stirling engine,”Pacific Rim thermal engineering conference, PRTEC-15502, USA, 2016.
    [24] 小栗富士雄,小栗達男,標準機械設計圖表便覽,眾文圖書股份有限公司,台北,台灣,2014。
    [25] F. P. Incropera, D. P. Bergman, T. L. Bergman, A. S. Lavine, Principles of heat and mass transfer, John Wiley and Sons Singapore Pte. Ltd, 2013.
    [26] S. Timoshenko, Strength of materials, D. van nostrand company, Inc., 1956.
    [27] C.H. Cheng, H.S. Yang, K. Lam, “Theoretical and experiment study of a 300-W beta-type Stirling engine,” Energy, pp. 590-599, 2013.

    無法下載圖示 校內:2021-06-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE