| 研究生: |
阮亮華 Juan, Liang-Hua |
|---|---|
| 論文名稱: |
以靜態及動態模式進行瓩級史特靈引擎之應力分析 Stress Analysis for 1-kW Stirling Engine by Static and Dynamic Model |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 史特靈引擎 、應力分析 、輸出軸功 |
| 外文關鍵詞: | Stirling engine, Stress analysis, Shaft power |
| 相關次數: | 點閱:152 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究建立β型史特靈引擎之靜態模式與動態模式,針對其結構進行三維之數值模擬與參數分析,期能透過模擬結果預測結構之安全性,並改良幾何尺寸使其安全性提高,避免構件於實際操作中損壞。靜態模式考慮引擎實際運轉中最危險之操作條件,模擬結構受到高溫高壓負載之情況,動態模式則計算引擎受到壓力負載與飛輪定轉速之循環狀態。根據等效應力模擬結果,針對移氣器、菱形驅動機構連桿及動力活塞之幾何尺寸進行參數分析,達到避免構件損壞或構件輕量化之目的,並利用修正後之幾何尺寸進行極限操作條件之參數分析,求得引擎構件可承受之最高溫度與填充壓力,同時,透過動態模式可預測於不同加熱端溫度、填充壓力及飛輪轉速下引擎之輸出軸功,並進一步與實驗結果作比對。
In this study, numerical simulation of mechanical strength of a 1-kW Stirling engine is performed. Three dimensional, static and dynamic numerical models for the whole engine are built based on the frame work of a commercial software, ANSYS ver. 15.0. The emphasis of this study is to make sure that all the parts of the engine are safe during operation so as to prevent these parts of the engine from damage particularly under very high operating pressures and temperature. Therefore, predictions of von Mises stress in all the components as well as the moment with the flywheel at a rotational speed of 1000 rpm are carried out. Parametric study is also evaluated on the von Mises stress distributions in all the major parts of the engine. The numerical predictions are then compared with the experimental data for the prototype Stirling engine for verification.
[1] 徐天佑、曾鴻陽,“台灣地區有關太陽能日照量之環境時空因素研究探討,”環境教育學刊,第6期,頁21-32,2007。
[2] 邵承矩,能源應用,東華書局,1987。
[3] R. Darling and K. Strong, Stirling and hot air engine, The crowood press Ltd., 2005.
[4] G. Walker, Stirling Engine, Oxford university press, New York, 1980.
[5] J. R. Senft, Ringbom Striling engines, Oxford university, USA, 1993.
[6] C. M. Hargreaves, The Phillips Stirling engine, Elsevier, New York, June 1991.
[7] C. D. West, Principles and applications of Stirling engine, Van Nostrand Reinhold, New York, 1986.
[8] B. Ross, “Status of the emerging technology of Stirling machines,” IEEE AES system magazine, 1995.
[9] M.E.H. Tijani, J.C.H. Zeegers, A.T.A.M. de Waele, “Construction and performance of a thermoacoustic refrigerator,” Cryogenics, Vol. 42, pp. 59–66, 2002.
[10] A. Hawkes, M. Leach, “Solid oxide fuel cell systems for residential micro-combined heat and power in the UK: key economic drivers”, J Power Sources, Vol. 149, pp. 72–83, 2005.
[11] A. J. Organ, Thermodynamics and gas dynamics of the Stirling cycle machine, Cambridge university press, 1992.
[12] W. M. Moscrip, Mechanical arrangements for Stirling cycle reciprocating thermal machines, US Patent No.4413474 A, 1983.
[13] R. J. Meijer, The Philips Stirling thermal engine, Technische Hogeschool Delft, 1960.
[14] M. Abbas, B. Boumeddane, N. Said, A. Chikouche, “Dish Stirling technology: a 100MW solar power plant using hydrogen for Algeria,
” International journal of hydrogen energy, Vol. 36, pp. 4305-4317, 2011.
[15] R. Dracker, P. de Laquil, “Progress commercializing solar-eletric power system,” United State: Annual reviewer Inc., pp. 371-402, 1996.
[16] W. Men, R. Matthew, S. Aldo, “Three-dimensional optical and thermal numerical model of solar tubular receivers in parabolic trough concentrators,” ASME J. Sol. Energy, Vol. 134, 2012.
[17] G. Joachim, H. Bernhard, S. Stefan, S. Markus, B. Reiner, T. Edgar, B. Kathrin, I. David, R. Christian, “Solar concentrating system using small mirro arrays,” ASME J. Sol. Energy Eng., Vol. 132, pp. 1-4, 2010.
[18] J. F. Besseling, “Non-linear analysis of structures by the finite element method as a supplement to a linear analysis,” Computer methods in applied mechanics and engineering, Vol. 3, pp. 173-194, 1974.
[19] H. J. Melosh, A. Raefsky, “A simple and efficient method for introducing faults into finite element computations,” Bulletin of the seismological society of America, Vol. 71, pp. 1931-1400.
[20] ANSYS mechanical user’s guide: ANSYS Release 15.0, ANSYS Inc., 2014.
[21] C. S. Desai, J. F. Abel, Introduction to the finite element method: A numerical method for engineering analysis, van nostrand reinhold, New York, 1972.
[22] R. A. Ackermann, Cryogenic regenerative heat exchangers: Springer, 1997.
[23] Y. F. Chen, C. H. Cheng, “Numerical simulation of thermal and flow fields in 1-kw beta-type stirling engine,”Pacific Rim thermal engineering conference, PRTEC-15502, USA, 2016.
[24] 小栗富士雄,小栗達男,標準機械設計圖表便覽,眾文圖書股份有限公司,台北,台灣,2014。
[25] F. P. Incropera, D. P. Bergman, T. L. Bergman, A. S. Lavine, Principles of heat and mass transfer, John Wiley and Sons Singapore Pte. Ltd, 2013.
[26] S. Timoshenko, Strength of materials, D. van nostrand company, Inc., 1956.
[27] C.H. Cheng, H.S. Yang, K. Lam, “Theoretical and experiment study of a 300-W beta-type Stirling engine,” Energy, pp. 590-599, 2013.
校內:2021-06-23公開