| 研究生: |
謝宜達 Hsieh, I-Ta |
|---|---|
| 論文名稱: |
以回彈沉浸邊界為基礎的晶格波茲曼法研究魚類群游的機制 The Mechanism of Fish Schooling Investigated by a Bounce-Back Based Immersed-Boundary Lattice Boltzmann Method |
| 指導教授: |
林三益
Lin, San-Yih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 魚類群游 、水中動物運動 、生物流體力學 、晶格波茲曼法 |
| 外文關鍵詞: | Fish schooling, Aquatic animal locomotion, Biofluid mechanics, Lattice Boltzmann method |
| 相關次數: | 點閱:66 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一個以回彈沉浸邊界為基礎的晶格波茲曼法已被發展用來處理移動邊界問題,並將應用在魚類群游機制的研究。本文並且提供了一個在晶格波資曼法下以動量交換原理為基礎的力量拆解的方法。在固定邊界的測試當中,此演算法達到了與理論分析相當的精確度,並發掘了無因次鬆弛時間τ對於晶格波資曼法特性的影響。在低雷諾數流的測試中,結果和前人的實驗數據可相比擬。在此數值方法的幫助下,對於二維的魚類群游行為吾人提出一種新的機制,有別於先前的文獻上所提及魚類群游時會以規則的結構排列,此機制認為魚類群游時將只是個別找到適合的位置跟隨前者。
To study the problem whether there is any hydrodynamical function in fish schooling, an bounce-back based immersed-boundary lattice Boltzmann method was developed to cope with the moving boundary problem. A method to decompose the force into shear and normal force by momentum exchange in lattice Boltzmann method is provided. This algorithm performs as well as the accuracy of the theoretical analysis in stationary-boundary test, and the characteristics of the non-dimensional relaxation time τ is also discovered. In low Reynolds number flow, the results by the current method are comparable to the former experiments. Under the proposed numerical scheme, in two-dimensional fish schooling we proposed a new mechanism that infers the following fish just find the best place to follow by, instead of to arrange themselves in the regular position.
1. M. Sfakiotakis, D. M. Lane, and J. B. C. Davies, “Review of fish swimming modes for aquatic locomotion,” IEEE J. Oceanic Engineering, Vol. 24, pp. 237 (1999).
2. C. C. Lindsey, “Form, function and locomotory habits in fish,” in Fish Physiology Vol. 7 Locomotion, W. S. Hoar and D. J. Randall, Eds. New York: Academic, 1978, pp. 1–100.
3. H. Liu and K. Kawachi, “A numerical study of undulatory swimming,” Journal of Computational Physics Vol. 155, pp. 223-247 (1999).
4. M. J. Lighthill, “Hydrodynamics of aquatic animal propulsion,” Annu. Rev. Fluid Mech. Vol. 1, pp. 413 (1969).
5. T. Y. Wu, “Hydrodynamics of swimming propulsion. Part 1. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid,” J. Fluid Mech. Vol. 46, No. 2 pp. 237 (1971).
6. J.-Y. Cheng, L.-X. Zhuang, and B.-G. Tong, “Analysis of swimming three-dimensional waving plates,” J. Fluid Mech. Vol. 232, pp. 341-355 (1991).
7. D. H. Cushing and F. R. Harden Jones, “Why do fish school?” Nature, Vol.218, p. 918-920 (1968).
8. V. E. Brock and R. H. Riffenburgh, “Fish schooling: a possible factor in reducing predation,” J. Cons. Intern. Explor. Mer., Vol.25, pp. 307 (1960).
9. C. M. Breder Jr. and D. E. Rosen, “Modes of reproduction in fishe” (1966).
10. D. Weihs, “Hydrodynamics of fish schooling,” Nature, Vol. 241, pp. 290 (1973).
11. B. L. Partridge and T. J. Pitcher, “Evidence against a hydrodynamic function for fish schools,” Nature, Vol. 279 (1979).
12. J. T. Batina, “Unsteady Euler airfoil solutions using unstructured dynamic meshes,” AIAA J., Vol. 28, No. 8, pp. 1381-1388 (1990).
13. J. A. Benek, P. G. Buning, and J. L. Steger, “A 3-D Chimera grid embedding technique,” AIAA Papper 85-1523 (1985).
14. C. W. Hirt, A. A. Amsden, and J. L. Cook, “An arbitrary Lagrangian-Eulerian computing method for all flow speeds,” J. Comput. Phys., Vol. 14:3, pp. 227-253 (1974).
15. D. D. Zeeuw and K. G. Powell, “An adaptively refined Cartesian mesh solver for the Euler equations,” J. Comput. Phys., Vol. 104, pp. 56-68 (1993).
16. C. S. Peskin, “The immersed boundary method,” Acta Numerica, Vol. 11, pp. 479-517 (2002).
17. D. Pan, “An immersed boundary method for incompressible flows using volume of body function,” Int. J. Numer. Meth. Fluids, Vol. 50, pp. 733-750 (2006).
18. Y. H. Tseng and J. H. Ferziger, “A ghost-cell immersed-boundary method for flow in complex geometry,” Int. J. Numer. Meth. Fluids, Vol. 56, pp. 877-898 (2008).
19. U. Frisch, B. Hasslacher, and Y. Pomeau, “Lattice gas cellular automata for the Navier-Stokes equations,” Phys. Rev. Lett., Vol. 56, pp. 1505 (1986).
20. D. P. Ziegler, “Boundary conditions for lattice Boltzmann simulations,” J. Stat. Phys., Vol. 71, pp. 1171 (1993).
21. I. Ginzbourg and P. M. Alder, “Boundary flow condition analysis for three-dimensional lattice Boltzmann model,” J. Phys. II France, Vol. 4, pp. 191-214 (1994).
22. O. Filippova and D. Hänel, “Grid refinement for lattice-BGK model,” J. Computational Physics, Vol. 147:1, pp. 219-228 (1998).
23. R. Mei, L.-S. Luo, and W. Shyy, “An accurate curved boundary treatment in the lattice Boltzmann method,” J. Computational Physics, Vol. 155, pp. 207-330 (1999).
24. M. Bouzidi, M. Firdaouss, and P. Lallemand, “Momentum transfer of a lattice Boltzmann fluid with boundaries,” Phys. Fluids, Vol. 13, pp. 3452 (2001).
25. P. Lallemand and L.-S. Luo, “Lattice Boltzmann method for moving boundaries,” J. Computational Physics, Vol. 184:2, pp. 406-421 (2003).
26. D. Yu, R. Mei, L.-S. Luo, and W. Shyy, “Viscous flow computations with the method of lattice Boltzmann equation,” Prog. Aerospace Sci., Vol. 39, pp. 329-367 (2003).
27. C. Shu, Y. T. Chew, and X. D. Niu, “Least-square-based lattice Boltzmann method: A meshless approach for simulation of flow with complex geometry,” Phys. Rev. E, Vol. 64, 045701 (2001).
28. C. Shu, N. Liu, and Y. T. Chew, “A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder,” J. Computational Physics, Vol. 226:2, pp. 1607-1622 (2007).
29. P. Yuan and L. Schaefer, “Equations of state in a lattice Boltzmann model,” Phys. of Fluids, Vol. 18, 042101 (2006).
30. P. Lallemand and L.-S. Luo, “Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability,” Phys. Rev. E, Vol. 61:6, pp. 6546-6562 (2000).
31. H. Yu and K. Zhao, “Lattice Boltzmann method for compressible flows with high Mach numbers,” Phys. Rev. E, Vol. 61 No. 4, pp. 3867 (2000).
32. Ashley H. Carter, "Classical and Statistical Thermodynamics."
33. Xiaoyi He, and Li-Shi Luo, "A priori derivation of the lattice Boltzmann equation," Physics Review, Vol.55, 6333-6336(1997)
34. Xiaoyi He, and Li-Shi Luo, "Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation," Physics Review, Vol.56, 6812-6817 (1997).
35. Dieter A. Wolf-Gladrow, "Lattice-Gas Cellular Automata and Lattice Boltzmann Models."(2000)
36. M. Sbragaglia and S. Succi, “A note on the Lattice Boltzmann Method beyond the Chapman-Enskog limits,” Europhys. Lett., Vol. 73, pp. 370 (2006).
37. S. Chapman and T. G. Cowling, “The mathematical theory of non-uniform gases.”
38. Xiaoyi He and Li-Shi Luo, “Lattice Boltzmann Model for the Incompressible Navier-Stokes Equation," Journal of Statistical Physics, Vol. 88 (1997).
39. Y.-H. Qian and Y. Zhou, “Complete Galilean invariant lattice BGK model for the Navier-Stokes equation,” Europhysics Lett. Vol. 42 No. 4, pp. 359 (1998).
40. T. Inamuro, M. Yoshino, and F. Ogino, “Accuracy of lattice Boltzmann method for small Knudsen number with finite Reynolds number,” Phys. Fluid, Vol. 9 (11), pp. 3535 (1997).
41. B. Fornberg, “Steady viscous flow past a circular cylinder up to Reynolds number 600,” J. Comput. Phys., Vol. 61, No. 2, pp. 297-320 (1985)
42. Y. Rimon and S. I. Cheng, "Numerical Solution of a Uniform Flow over a Sphere at Intermediate Reynolds Numbers,” Phys. Fluids Vol. 12: 949 (1969).
43. L. Schiller and A. Naumann, Über die grundlegenden berechungen bei der schwerkraft aufbereitung, Vereines Deutscher Ingenieure 77, pp. 318–320 (1933)
44. H. Liebster, “Uber den widerstand von kugeln,” Annalen der Physik (1927).
45. HS Allen, ”The motion of a sphere in a viscous fluid, ”Philosophical Magazine Series 5 (1900).
46. X. He and L.-S. Luo, “Lattice Boltzmann model for the incompressible Navier-Stoke equation,” Journal of Statistical Physics 1997; 88:927-944.
47. A. M. Jones and J. G. Knudsen, “Drag coefficients at low Reynolds numbers for flow past immersed bodies,” A.I.Ch.E. Journal Vol. 1 (1), p. 20–25, March 1961
48. S. Tomotika and T. Aoi, “An expansion formula for the drag on a circular cylinder moving through a viscous fluid at small Reynolds number,” Q. J. Mechanics Appl. Math., Vol. 4 (4), p. 401-406 (1951)
49. D. Sucker and H. Brauer, “Investigation of the flow around transverse cylinders,” Waerme- und Stoffuebertragung, vol. 8, no. 3, 1975, p. 149-158. In German
50. D. J. Tritton, “Experiments on the f o past a circular cylinder at low Reynolds numbers,” Journal of Fluid Mechanics, Vol. 6: p. 547-567 (1959)
51. H. K. Williamson, “Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers,” Journal of Fluid Mechanics, Vol. 206: p. 579-627 (1989).
52. Anatol Roshko, “Experiments on the flow past a circular cylinder at very high Reynolds number,” Journal of Fluid Me chanics, Vol. 210: p. 345-356 (1961).
53. H. Hamdani and M. Sun, “Aerodynamic forces and flow structures of an airfoil in some unsteady motions at small Reynolds number,” Acta Mechanica Vol. 145, No. 1-4, 173-187 (2000).
54. J. Young and J. C. S. Lai, “Oscillation frequency and amplitude effects on the wake of plunging airfoil,” AIAA Journal Vol. 42, No. 10:2042-2052 (2004)
55. H. Liu, R. Wassenberg, and K. Kawachi, “A computational fluid dynamics study of tadpole swimming,” J. Exp. Biol. Vol. 199, p. 1245 (1996).
56. H. Liu, R. Wassenberg, and K. Kawachi, “The three-dimensional hydrodynamics of tadpole swimming,” J. Exp. Biol. Vol. 200, p. 2807 (1997).
57. J. J. Videler, “Fish swimming,” Chapman & Hall, London, 1993
58. R. Wassersug and K. Hoff, “The kinematics of Swimming in Anuran Larvae,” J. Exp. Biol. Vol. 119, p.1 (1985)
59. M-H Chung, “On burst-and-coast swimming performance in fish-like locomotion,” Bioinspiration & Biomimetics Vol. 4 036001 (2009).
60. C. Shu, N.Liu, Y. Chew, and Z. Lu, “Numerical simulation of fish motion by using lattice Boltzmann-immersed boundary velocity correction method,” J. Mech. Sci. Tech., Vol.21, p. 1139-1149 (2007).
61. J. J. Rohr and F. E. Fish, “Strouhal numbers and optimization of swimming by odontocete cetaceans,” J. Exp. Bio. Vol.207, p. 1633-1642 (2004).
62. T. J. Pitcher and J. K. Parish, “Functions of shoaling behaviour in teleosts, In: T. J. Pitcher (ed) Behaviour of teleost fishes,” Chapman and Hall, New York, pp. 363-440 (1993) .