| 研究生: |
古仁義 Sareddy, Kullai Reddy |
|---|---|
| 論文名稱: |
以一氧化二氮作為氧化劑的熱效應對於層流甲烷預混火焰燃燒特性之影響 Thermal effect of N2O being oxidizer on combustion characteristics of laminar premixed methane flames |
| 指導教授: |
李約亨
Li, Yueh-Heng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 甲烷/氧化亞氮火焰 、熱效應 、富氧燃燒 、層流預混火焰 、馬 赫-曾德爾干涉儀(Mach Zehnder Interferometer) |
| 外文關鍵詞: | Methane / Nitrous oxide flames, thermal effect, oxy-enrich combustion, laminar premixed flame, Mach Zehnder Interferometer |
| 相關次數: | 點閱:145 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,通過實驗與數值模擬的方式研究在單管噴流火焰燃燒器中的層流預混甲烷/氧化亞氮的燃燒現象與污染特性。基本上,甲烷/氧化亞氮火焰中,氧化亞氮的熱效應和化學效應占主導地位。比較CH4 / N2O 火焰,與假設氧化劑N2O 完全分解為33%O2 和67%N2的甲烷/富氧火焰,當量比為0.8 至1.2 條件下,討論並比較其燃燒特性與火焰結構的差異。 在兩種氧化劑的環境條件(分別為N2O 和富氧條件:33%O2 和67%N2)下檢查火焰外觀,溫度分佈和污染物排放。由於熱效應與化學效應造成在甲烷/氧化亞氮火焰中的溫度提升,以及CO、NOx 濃度的增加;相反地,在富氧火焰中,這些熱效應和化學效應不會提升火焰溫度以及汙染物CO、NOx 濃度。通過火焰溫度測量研究了層流預混火焰的熱效應,並通過廢氣監測系統測量污染物排放特性。在溫度量測部分,本研究是利用Mach-Zehnder 干涉測量(MZI)以獲取瞬時二維的溫度分布,並使用介入式熱電耦量測火焰溫度並驗證MZI實驗結果。
The purpose of this research is to study the laminar premixed methane/nitrous oxide combustion in the single tubular flame burner. Simulation of nitrous oxides flames at the high-temperature oxidation zone and the accompanied
thermal and chemical effect on CH4/N2O and CH4/oxy-enrich flames were carried out. The study of CH4/N2O combustion has been compared to oxyenrich combustion (constituting of 33%O2 and 67%N2 to simulate the full decomposition of N2O ) under the equivalence ratio between 0.8 and 1.2. The
flame appearance, temperature profiles, and pollutant emission were examined under two environments: N2O as oxidant and mixture of 33%O2 and 67%N2 as oxidant. These thermal and chemical effects can induce a hightemperature
zone and cause the increase in CO concentration and NOx
concentration significantly in nitrous oxide flames, whereas in oxy-enrich flames these thermal and chemical effects do not exhibit high temperature and high CO and NOx concentration prominently. The thermal behavior of the
laminar premixed flame was investigated by flame temperature measurement, and the pollutant emission characteristics were measured through flue gas monitoring system. The Mach-Zehnder interferometry (MZI) was
implemented to acquire instantaneous 2D temperature field and validated by the experimental results of thermocouples.
References
[1] S. X, https://www.spacex.com/news.
[2] A.N. Hayhurst, A.D. Lawrence, Emissions of nitrous oxide from combustion sources, Progress in Energy and Combustion Science, 18 (1992)529-552.
[3] W.H. Lipkea, D. Milks, R.A. Matula, Nitrous Oxide Decomposition and its Reaction with Atomic Oxygen, Combustion Science and Technology, 6(1973) 257-267.
[4] J.S.D. A.R Ravishankara, Robert W. Portmann, Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century, Science Express, 2009, pp. 9.
[5] E.P. Agencey, Overview of green house gases by source of nitrous oxide, U.S EPA, 2017.
[6] N.C.f.B. Information, PubChem Database. Nitrous oxide.
[7] A.V. Bridgwater, Review of fast pyrolysis of biomass and product upgrading, Biomass and Bioenergy, 38 (2012) 68-94.
[8] B. GradoŃ, NITROUS OXIDE THERMAL DECOMPOSITION IN THE
FLAME TEMPERATURE RANGE AT ATMOSPHERIC PRESSURE,
Combustion Science and Technology, 178 (2006) 1477-1489.
[9] G.P. Sutton, Biblarz, Oscar, Rocket Propulsion Elements (7the ed.), John Wiley & Sons2001.
[10] D.J.F. Gregory Mungas, Nitrous oxide fuel blend monopropellants, Fags.org, 2009.
[11] J. Tomeczek, B. GradoŃ, The Role of Nitrous Oxide in the Mechanism of Thermal Nitric Oxide Formation within Flame Temperature Range, Combustion Science and Technology, 125 (1997) 159-180.
[12] Z. Y.B, The oxidation of nitrogen in combustion and explosions, Acta 91 Physiochemistry, USSR, 21 (1946) 577-628.
[13] wolffrum.J, Bildung von stickstoffoxiden bei der Verbrennung, 1972.
[14] P.C.a.P. Malte, D.T, The role of energy- releasing kinetics in NOx formation: Fuel-lean, jet stirred CO-air combustion, Combustion Science and Technology, 9 (1974) 221-231.
[15] J. Tomeczek, B. Gradoń, The role of N2O and NNH in the formation of NO via HCN in hydrocarbon flames, Combust Flame, 133 (2003) 311-322.
[16] S.A. Frolik, Hybrid rockets, Aerospace America, 41 (2003) 68-68.
[17] T. Newman-Lehman, R. Grana, K. Seshadri, F. Williams, The structure and extinction of nonpremixed methane/nitrous oxide and ethane/nitrous oxide flames, P Combust Inst, 34 (2013) 2147-2153.
[18] C.H. Chen, Effects of Diluent addition on combustion characteristics of methane/nitrous oxide inverse diffusion flame, Aeronautics & Astronautics, National Cheng Kung University, Tainan, 2018.
[19] T. Hulgaard, K. Dam‐Johansen, Homogeneous nitrous oxide formation and destruction under combustion conditions, AIChE journal, 39 (1993) 1342-1354.
[20] F. Dietzsch, A. Scholtissek, F. Hunger, C. Hasse, The impact of thermal diffusion on the structure of non-premixed flames, Combust Flame, 194(2018) 352-362.
[21] A.R. Khan, S. Anbusaravanan, L. Kalathi, R. Velamati, C. Prathap, Investigation of dilution effect with N2/CO2 on laminar burning velocity of premixed methane/oxygen mixtures using freely expanding spherical flames, Fuel, 196 (2017) 225-232.
[22] O.A. Powell, P. Papas, C. Dreyer, Laminar Burning Velocities for Hydrogen-, Methane-, Acetylene-, and Propane-Nitrous Oxide Flames, Combustion Science and Technology, 181 (2009) 917-936.
[23] D. Razus, M. Mitu, V. Giurcan, C. Movileanu, D. Oancea, Methaneunconventional oxidant flames. Laminar burning velocities of nitrogen diluted methane–N2O mixtures, Process Safety and Environmental Protection, 114 (2018) 240-250.
[24] Y. Deguchi, Industrial applications of laser diagnostics, CRC Press.
[25] G.K.R. Mehta, M.K and Strahle, W.C, Correlations between light emission, Acoustic emission and ion density in premixed turbulent flames, 18th symposium on combustion, The combustion Institute, 1981, pp. 1051-1059.
[26] D.F.G.D.M.V.H.J.H.W.P.O. Witze, Combustion Flow Diagnostics.
[27] J. Qi, W. Wong, C. Leung, D. Yuen, Temperature field measurement of a premixed butane/air slot laminar flame jet with Mach–Zehnder Interferometry, Applied Thermal Engineering, 28 (2008) 1806-1812.
[28] S. Sharma, G. Sheoran, C. Shakher, Investigation of temperature and temperature profile in axi-symmetric flame of butane torch burner using digital holographic interferometry, Optics and Lasers in Engineering, 50
(2012) 1436-1444.
[29] Z.N. Ashrafi, M. Ashjaee, M. Askari, Two-dimensional temperature field measurement of a premixed methane/air flame using Mach–Zehnder interferometry, Optics Communications, 341 (2015) 55-63.
[30] M. Ahmadi, M.S. Avval, T. Yousefi, M. Goharkhah, B. Nasr, M. Ashjaee, Temperature measurement of a premixed radially symmetric methane flame jet using the Mach–Zehnder Interferometry, Optics and Lasers in Engineering, 49 (2011) 859-865.
[31] B.A. Rabee, The effect of inverse diffusion flame burner-diameter on flame characteristics and emissions, Energy, 160 (2018) 1201-1207.
[32] W.E. Kaskan, The dependence of flame temperature on mass burning velocity, Symposium (International) on Combustion, 6 (1957) 134-143.
[33] Ö.L. Gülder, D.R. Snelling, R.A. Sawchuk, Influence of hydrogen addition to fuel on temperature field and soot formation in diffusion flames, Symposium (International) on Combustion, 26 (1996) 2351-2358.
[34] D.G. Nicol, R.C. Steele, N.M. Marinov, P.C. Malte, The importance of the nitrous oxide pathway to NOx in lean-premixed combustion, ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition, American Society of Mechanical Engineers, 1993, pp. V03CT17A003-V003CT017A003.
[35] M. de las Obras-Loscertales, T. Mendiara, A. Rufas, L.F. de Diego, F. García-Labiano, P. Gayán, A. Abad, J. Adánez, NO and N2O emissions in oxyfuel combustion of coal in a bubbling fluidized bed combustor, Fuel, 150(2015) 146-153.
[36] J.A. Vanderhoff, S.W. Bunte, A.J. Kotlar, R.A. Beyer, Temperature and concentration profiles in hydrogen nitrous oxide flames, Combust Flame, 65 (1986) 45-51.
[37] A. Colorado, V. McDonell, S. Samuelsen, Direct emissions of nitrous oxide from combustion of gaseous fuels, International Journal of Hydrogen Energy, 42 (2017) 711-719.
[38] J. Miao, C.W. Leung, C.S. Cheung, Z.H. Huang, H.S. Zhen, Effect of hydrogen addition on overall pollutant emissions of inverse diffusion flame, Energy, 104 (2016) 284-294.
[39] A. Kotb, H. Saad, A comparison of the thermal and emission characteristics of co and counter swirl inverse diffusion flames, International Journal of Thermal Sciences, 109 (2016) 362-373.
[40] H.K. Kim, Kim, Yongmo, Lee, Sang Min, Ahn, Kook Young, NO reduction in 0.03-0.2MW oxy-fuel combustor using flue gas recirculation technology, 2007.
[41] B.M. Kumfer, S.A. Skeen, R.L. Axelbaum, Soot inception limits in laminar diffusion flames with application to oxy–fuel combustion, Combust Flame, 154 (2008) 546-556.
[42] Y. Jung, K.C. Oh, C. Bae, H.D. Shin, The effect of oxygen enrichment on incipient soot particles in inverse diffusion flames, Fuel, 102 (2012) 199-207.
[43] S. Park, Y. Kim, Effects of nitrogen dilution on the NOx formation characteristics of CH4/CO/H2 syngas counterflow non-premixed flames, International Journal of Hydrogen Energy, 42 (2017) 11945-11961.
[44] D.E.Rosner, Transport processes in chemically reacting flow systems Butter-worths series in chemical engineering, (1986).
[45] C.F.C. J.O.Hirschfelder, R.B.Bird, Molecular theory of gases and liquids, John Wiley & Sons, (1954).
[46] R. Hilbert, F. Tap, H. El-Rabii, D. Thévenin, Impact of detailed chemistry and transport models on turbulent combustion simulations, Progress in Energy and Combustion Science, 30 (2004) 61-117.
[47] S. Chapman, F. Dootson, XXII. A note on thermal diffusion, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 33(1917) 248-253.
[48] M.H. Lefebvre, E.S. Oran, K. Kailasanath, P.J. Vantiggelen, The Influence of the Heat-Capacity and Diluent on Detonation Structure, Combust Flame, 95 (1993) 206-218.
[49] A. Ern§, V. Giovangigli∥, Thermal diffusion effects in hydrogen-air and methane-air flames, Combustion Theory and Modelling, 2 (1998) 349-372.
[50] A.n. Salazar, On thermal diffusivity, European Journal of Physics, 24(2003) 351-358.
[51] M. Arias-Zugasti, D.E. Rosner, Soret transport, unequal diffusivity, and dilution effects on laminar diffusion flame temperatures and positions, Combust Flame, 153 (2008) 33-44.
[52] F. Yang, C.K. Law, C.J. Sung, H.Q. Zhang, A mechanistic study of Soret diffusion in hydrogen–air flames, Combust Flame, 157 (2010) 192-200.
[53] J.F.G. R.J.Kee, M.D.Smooke,J.AMiller, A Fortran program for modeling steady laminar one-dimensional premixed flames, Report SAND858240, Sandia National Laboratories, NM, 1993.
[54] G.D. Smith G, Frenklach M, Moriarty N, Eiteneer B, Goldenberg M, et al, Gri-Mech 3.0, <http://www.me.berkeley.edu/gri_mech/>.
[55] R.J.D.-L.G. Kee, Warnatz, J, Coltrin, M.E., and Miller J.A, A Fortran Computer Code Package for the Evaluation of Gas-Phase Multicomponent Transport Properties, 1986.
[56] A.E. Lutz, R.J. Kee, J.F. Grcar, F.M. Rupley, OPPDIF: A Fortran program for computing opposed-flow diffusion flames, United States, 1997.
[57] Y. Zhao, H. Zhao, R.-q. Lv, J. Zhao, Review of optical fiber Mach–Zehnder interferometers with micro-cavity fabricated by femtosecond laser and sensing applications, Optics and Lasers in Engineering, 117 (2019) 7-20.
[58] S.K.R. Chih-Ting Chen, Yueh-Heng Li, MZI Measurements on ab oxidant-diluted N2O/CH4 Inverse diffusion flame, 9th ECMPortugal, 2019.
[59] NIST, Refractive index of species, in: R.i.o. gases (Ed.) https://refractiveindex.info.
[60] G. R., Fluid Mechanics Measurements, Taylor & Francis2017.
[61] M. Takeda, H.Ina, and S.Kobayashi, Fourier-transform method of fringepattern analysis for computer-based topography and interferometry, Journal of the Optical Society of America, 72(1) (1982) 156-160.
[62] C.J. Dasch, One-dimensional tomography: a comparison of abel, onionpeeling, and filtered back projection methods, Applied Optics, 31(8) (1992)1146-1152.