| 研究生: |
邱英銓 Chiu, Ying-Chuan |
|---|---|
| 論文名稱: |
消耗溫室氣體的獨立式固態氧化物燃料電池/汽渦輪機混合發電系統之研究 The study of stand-alone SOFC/GT hybrid power generation system ny consuming greenhouse gases |
| 指導教授: |
吳煒
Wu, Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | SOFC/GT 、溫室氣體 、合成氣 、燃料電池 、動態模擬 |
| 外文關鍵詞: | SOFC/GT, greenhouse gases, syngas, fuel cell, dynamic simulation |
| 相關次數: | 點閱:88 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
固態氧化物燃料電池(SOFC)結合汽渦輪機(GT)發電為一常見提升燃料使用效率之發電設計,本篇研究透過結合SOFC/GT與結合消耗溫室氣體之合成氣產生程序設計出同時滿足低碳排放兼具高效率之混合發電系統。
首先透過Aspen Plus軟體建立燃料處理程序以及後燃器、汽渦輪機發電等程序,接著透過Simulink軟體建立固態氧化物燃料電池模組。經由模擬結果發現,由二氧化碳-甲烷重組器串接於傳統甲烷-蒸汽重組器之後的燃料處理設計所提供含1.7%二氧化碳之溫室氣體燃料對於SOFC電力輸出有正面效益,所建立之1-MW量級混合發電系統之效率達86.5%,並且經過熱整合的設計將熱交換網路年總成本減少28.4%。
最後,透過整合Aspen Plus Dynamics與Simulink兩軟體之平台成功實現了混合發電系統之動態模擬,並且觀察到進料改變對系統效能的影響之非線性特性以及反向響應的出現。
This research combined SOFC/GT with the greenhouse-gases-consuming syngas production process to provide a high efficiency and low carbon-emission hybrid power generation system design. The modeling and simulation is demonstrated by the software, Aspen Plus and Simulink. The fuel processing process connected a CO2 reformer behind traditional steam-methane reformer to provide syngas as fuel for SOFC stack and the simulation result showed that the fuel with only 1.7% CO2 content is beneficial to the SOFC stack. The 1-MW class hybrid power generation system performed high efficiency up to 86.5% and the total annual cost of the heat exchanger network has reduced 28.4% through the heat integration design. Finally, the dynamic simulation is successfully demonstrated by an integrated platform using Aspen Plus Dynamics/Simulink. Also, the effects of input change to the system performance and the nonlinear and asymmetry characteristics of the system have been observed.
1.Singhal, S.C. and K. Kendall, High temperature solid oxide fuel cells: fundamentals, design and applications. 2003: Elsevier Advamced Technology.
2.Laosiripojana, N. and S. Assabumrungrat, Catalytic steam reforming of dimethyl ether (DME) over high surface area Ce–ZrO2 at SOFC temperature: The possible use of DME in indirect internal reforming operation (IIR-SOFC). Applied Catalysis A: General, 2007. 320: p. 105-113.
3.Jeong, J., S.-W. Baek, and J. Bae, A diesel-driven, metal-based solid oxide fuel cell. Journal of Power Sources, 2014. 250: p. 98-104.
4.Oyama, S.T., et al., Dry reforming of methane has no future for hydrogen production: Comparison with steam reforming at high pressure in standard and membrane reactors. International Journal of Hydrogen Energy, 2012. 37: p. 10444-10450.
5.Wu, W., C. Tungpanututh, and H.-T. Yang, A conceptual design of a stand-alone hydrogen production system with low carbon dioxide emissions. international journal of hydrogen energy, 2012. 37: p. 10145-10155.
6.Yang, H.-T., Optimization, identification and control of stand-alone syngas production system with low carbon emissions, in Department of Chemical Engineering. 2013, National Cheng Kung University.
7.Kuchonthar, P., S. Bhattachary, and A. Tsutsumi, Energy recuperation in solid oxide fuel cell (SOFC) and gas turbine (GT) combined system. Journal of Power Sources, 2003. 117: p. 7-13.
8.Kuchontharaa, P., S. Bhattacharyab, and A. Tsutsumi, Combinations of solid oxide fuel cell and several enhanced gas turbine cycles. Journal of Power Sources, 2003. 124: p. 65-75.
9.Liese, E.A. and R.S. Gemmen, Performance Comparison of Internal Reforming Against External Reforming in a Solid Oxide Fuel Cell, Gas Turbine Hybrid System. Journal of Engineering for Gas Turbines and Power, 2005. 1271(1): p. 86-90.
10.Möller, B.F., et al., Optimisation of an SOFC/GT system with CO2-capture. Journal of Power Sources, 2004. 131: p. 320-326.
11.Zhang, W., et al., Simulation of a tubular solid oxide fuel cell stack using AspenPlus unit operation models. Energy Conversion and Management, 2004. 46: p. 181-196.
12.Lin, J.-h., Dynamic simulation and control design of SOFC/GT hybrid power generation systems, in Institute of Chemical and Materials Engineering. 2011, National Yunlin University of Science & Technology.
13.Leuchta, F., et al., Fuel cell system modeling for solid oxide fuel cell/gas turbine hybrid power plants, Part I: Modeling and simulation framework. Journal of Power Sources, 2011. 196: p. 1205-1215.
14.Kandepu, R., et al., Modeling and control of a SOFC-GT-based autonomous power system. ENERGY, 2007. 32: p. 406-417.
15.Aspen Technology, I., Aspen Plus User Guide v10.2. 2000: Aspen Technology, Inc.
16.Xu, J. and G.F. Froment, Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics. AIChE Journal, 1989. 35(1): p. 88-96.
17.Verykios, X.E., Catalytic dry reforming of natural gas for the production of chemicals and hydrogen. International Journal of Hydrogen Energy, 2003. 28: p. 1045-1063.
18.Becker, W.L., et al., Design and technoeconomic performance analysis of a 1 MW solid oxide fuel cell polygeneration system for combined production of heat, hydrogen, and power. Journal of Power Sources, 2012. 200: p. 34-44.
19.Thorud, B., Dynamic Modelling and Characterisation of a Solid Oxide Fuel Cell Integrated in a Gas Turbine Cycle, in Department of Energy and Process Engineering. 2005, Norwegian University of Science and Technology Faculty of Engineering Science and Technology.
20.Calise, F., A. Palombo, and L. Vanoli, Design and partial load exergy analysis of hybrid SOFC–GT power plant. Journal of Power Sources, 2006. 158: p. 225-244.
21.Campanari, S. and P. Iora, Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry. Journal of Power Sources, 2004. 132: p. 113-126.
22.Zhang, X., J. Li, and G. Li, Numerical study on the thermal characteristics in a tubular solid oxide fuel cell with indirect internal reformer. International Journal of Thermal Sciences, 2009. 48: p. 805-814.
23.Haberman, B.A. and J.B. Young, Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell. International Journal of Heat and Mass Transfer, 2004. 47: p. 3617-3629.
24.Smith, J.M., H.C.V. Ness, and M.M. Abbott, Introduction to Chemical Engineering Thermodynamics. 7 ed. 2005: McGraw Hill Higher Education.
25.Jin, X., Modeling of Chemical-Mechanical Couplings in Solid Oxide Cells and Reliability Analysis, in Mechanical Engineering. 2014, University of South Carolina.
26.Pirkandi, J., et al., Electrochemical and thermodynamic modeling of a CHP system using tubular solid oxide fuel cell (SOFC-CHP). Journal of Cleaner Production, 2012. 29-30: p. 151-162.
27.Lee, M.C., et al., Gas turbine combustion performance test of hydrogen and carbon monoxide synthetic gas. Fuel, 2010. 89: p. 1485-1491.
28.Serna-González, M., J.M. Ponce-Ortega, and O. Burgara-Montero. Total Cost Targeting for Heat Exchanger Networks Including Pumping Costs. in 20th European Symposium on Computer Aided Process Engineering 2010. Ischia, Naples, Italy.
29.Sun, K.N., S.R.W. Alwi, and Z.A. Manan, Heat exchanger network cost optimization considering multiple utilities and different types of heat exchangers. Computers and Chemical Engineering, 2013. 49: p. 194-204.
30.Smith, R., Chemical Process: Design and Integration. 2005: Wiley. 712.