簡易檢索 / 詳目顯示

研究生: 楊雅萍
Yang, Ya-Ping
論文名稱: 蝴蝶蘭萜類合成酶基因之選殖及酵素功能分析
Cloning and functional characterization of terpene synthase in Phalaenopsis orchids
指導教授: 陳虹樺
Chen, Hong-Hwa
鄭梅芬
Jeng, Mei-Fen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 43
中文關鍵詞: 姬蝴蝶蘭揮發性化合物萜類合成酶大葉蝴蝶蘭
外文關鍵詞: volatile compound, terpene synthase, Phalaenopsis bellina, Phalaenopsis equestris
相關次數: 點閱:104下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多植物可以散發揮發性化合物作為吸引授粉者或防禦功能。揮發性化合物主要包含萜類、類苯丙醇、苯類、脂肪酸衍生物。萜類合成酶在萜類生合成路徑中是重要的酵素。許多萜類合成酶基因(terpene synthase, TPS)已經在雙子葉植物及少數單子葉植物被分離出來。然而,目前沒有任何報導關於蘭科萜類合成酶基因之研究。蝴蝶蘭是台灣重要的經濟花卉產業,因此,本篇論文主要在具有香味的大葉蝴蝶(Phalaenopsis bellina)及無香味的姬蝴蝶蘭 (Phalaenopsis equestris)分離及鑑定萜類合成酶基因,比較此二種蝴蝶蘭所含萜類合成酶基因序列與其基因之表現。
    首先,我們比較兩個物種間花部揮發性化合物之成份。大葉蝴蝶蘭揮發性化合物分析已被報導在2006年蕭郁芸學姊發表之文獻。經分析姬蝴蝶蘭之花部揮發性化合物發現二者皆具有像似量的脂肪酸衍生物,而大葉蝴蝶蘭之萜類化合物含量是顯著於姬蝴蝶蘭並且主要為單萜類化合物。進一步在姬蝴蝶蘭花苞EST(expressed sequence tag)資料庫中分離一個全長complementary DNA (cDNA)的萜類合成酶基因並命名為PeTPS (P. equestris terpene synthase)。萜類合成酶基因之open reading frame (ORF)為1,647 bp可轉譯成549胺基酸。另外,使用姬蝴蝶蘭之一對可增殖PeTPS引子成功選殖大葉蝴蝶蘭萜類合成酶基因並命名為PbTPS (P. bellina terpene synthase)。比較PeTPS及PbTPS二者之轉譯胺基酸序列,發現彼此間有96.1 %序列相似度並具有二價金屬離子結合位置之DDIYD motif及R(H/Q)X8W motif。此外,PeTPS及PbTPS蛋白質並沒有預測導引訊息片段,因此它們的可能作用位置乃位於細胞質。演化分析結果指出姬蝴蝶蘭及大葉蝴蝶蘭之轉譯胺基酸序列被歸類為TPSa群,即屬於被子植物之半萜類合成酶及雙萜類合成酶之分群。南方墨點法分析姬蝴蝶蘭半萜類合成酶在姬蝴蝶蘭基因體中為只含有一個copy number基因。利用北方墨點法分析PeTPS及PbTPS基因之在不同時間的表現模式,發現PeTPS主要表現在姬蝴蝶蘭花苞時期至開花第十天,並以開花當天有最大表現量;而PbTPS在大葉蝴蝶蘭最大表現量卻於花苞時期。在不同的空間表現模式分析結果顯現姬蝴蝶蘭PeTPS基因主要表現在唇瓣及花梗。進一步利用RTS100 kit之小麥胚芽萃取物in vitro系統將PeTPS蛋白質成功表現,經西方墨點法以抗His-tag之抗體證實PeTPS蛋白質為一個65 kDa之蛋白質。利用GC-MS (gas chromatography-mass spectrometry)進行酵素功能分析結果顯示,PeTPS蛋白質之酵素主要會利用geranyl diphosphate (GDP)為受質以形成單萜類如cis-citral, geraniol 及trans-citral,而未偵測到以farnesyl diphosphate (FDP)及geranyl geranyl diphosphate (GGDP)為受質以生成半萜類及雙萜類化合物。這結果顯示PeTPS蛋白質應該是個單萜類合成酶,雖然它的序列分析較相似倍半萜類合成酶。PeTPS基因及PbTPS基因二者在蘭科作物首度被分離。未來之研究可以進行PeTPS基因轉殖植物散發具有香味cis-citral, geraniol 及trans-citral之研究,在應用上可以使無香味植物轉變成香味植物。

    Many plants emit volatile compounds as a means of attracting pollinators or defense function. The volatile components mainly consist of terpenoid, phenylpropanoid, benzenoids, and fatty acid derivatives. TPS are key enzymes in terpene biosynthesis pathway. Many TPS genes have been isolated and characterized in dicotyledon and in monocotyledon. However, so far no TPS have been documented in orchids. Phalaenopsis spp. has been developed as an important cash plant in Taiwan ornamental industry. Therefore, I aimed to isolate and functionally characterize TPS gene, and compare the TPS transcripts from both scentless P. equestris and scented P. bellina.
    First, floral volatiles emitted form both scentless P. equestris and scented P. bellina were compared. Although the contents of terpene in scented P. bellina were remarkable and mainly composed of monoterpenes (Hsiao et al., 2006), the contents of fatty acid derivatives were similar in both scentless P. equestirs and scented P. bellina. A full-length cDNA encoding sesquiterpene synthase was cloned and sequenced from the EST database of P. equestris flower buds, and thus named as PeTPS. It harbored an ORF cDNA of 1,647 bp and can be translated to a protein of 549 amino acids. An ORF cDNA of terpene synthase (PbTPS) from P. bellina was also cloned using PCR with a pair of primers derived from PeTPS sequence. Alignments for PeTPS and PbTPS deduced amino acid sequences showed a high identity (96.1 %) containing the conserved DDIYD motif involved in the binding of a divalent metal cofactor and an R(H/Q)X8W motif. In addition, no any transit peptides were predicted, suggesting that its subcellular localization was in the cytoplasm. Phylogenetic analysis of plant terpene synthases showed that the PeTPS and PbTPS were classified in the TPSa subfamily, which consists of sesquiterpene synthase and diterpene synthase. The PeTPS gene was a single-copy gene as examined by using Southern blot analysis. Temporal expression of PeTPS transcript was expressed from the first stage of flower buds to day 10 post-anthesis of P. equestris, with a maximal expression on the blooming day. However, the maximal expression of PbTPS was detected at the bud stages of P. bellina. Spatially, PeTPS was highly expressed in lip and pedicle and to a small amount in the vegetative tissues and all other floral organs. The PeTPS protein was expressed by using in vitro system of the RTS 100 Wheat Germ CECF kit. An expected protein size of 65 kDa encoded by PeTPS was detected by using western blot analysis. The recombinant PeTPS protein catalyzed the formation of three monoterpenes, including cis-citral, geraniol and trans-citral, when GDP was added as the substrate in the in vitro functional assay and analyzed by GC-MS. However, little or no sesquiterpenes or diterpenes were produced when FDP and GGDP were added as substrates, respectively. We concluded that the PeTPS was a monoterpene synthase even though its amino acid sequence was similar to sesquiterpene synthase. PeTPS and PbTPS are the first isolated terpene synthase genes in orchids. In future transgenic plants ectopic expressing PeTPS can be generated to emit aromatic volatiles, including cis-citral, geraniol and trans-citral. Therefore, scentless plants species could be changed to scented plant species by introducing the PeTPS or PbTPS gene.

    中文摘要i Abstractiii Abbreviationsv List of TablesIII List of FiguresIV List of AppendixV 1. Introduction1 1.1 Significance of floral scent in plant1 1.2 Research of floral scent and terpene synthase in orchid1 1.3 Major plant secondary metabolites – terpenes2 2. Materials and methods 6 2.1 Plant materials and RNA preparation6 2.2 Dynamic headspace chemical collection and GC-MS analysis in floral volatiles6 2.3 Chemical extraction and GC-MS analysis in floral non-volatiles 7 2.4 Cloning of terpene synthase gene in P. equestris and P. bellina7 2.5 Sequence analysis8 2.6 Phylogenetic analysis8 2.7 Isolation of total RNA9 2.8 Isolation of genomic DNA10 2.9 Southern hybridization 11 2.10 Northern hybridization 11 2.11 Heterologous expression of terpene synthase12 2.12 Enzyme activity assay for terpene synthase activity12 3. Results14 3.1 Chemical analysis of floral volatiles14 3.2 Cloning and sequence analysis of terpene synthase gene in both P. equestris and P. bellina14 3.3 Temporal and spatial expression levels of PeTPS and PbTPS in P. equestris and P. bellina, respectively16 3.4 Chemical analysis of floral non-volatile sesquiterpens16 3.5 Heterologous expression of PeTPS 16 3.6 Functional characterization of heterologous expressed protein PeTPS17 4. Discussion18 4.1 Chemical analysis of floral volatile terpenes18 4.2 Temporal and spatial expression levels of PeTPS and PbTPS in P. equestris and P. bellina, respectively18 4.3 Chemical analysis of floral non-volatile sesquiterpens18 4.4 Functional characterization of heterologous expressed protein PeTPS 19 5. References22 Tables28 Figures30 Appendix41

    Aharoni, A.; Giri, A.P.; Verstappen, F. W.; Bertea, C.M.; Sevenier, R.; Sun, Z.; Jongsma, M.A.; Schwab, W.; and Bouwmeester, H.J. Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16:3110-3131, 2004.

    Alchanati, I.; Patel, J.A.A.; Liu, J.; Benedict, C.R.; Stipanovic, R.D.; Bell, A.A., Cui, Y.; and Magill, C.W. The enzymatic cyclization of nerolidyl diphosphate by δ-cadinene synthase from cotton stele tissue infected with Verticillium dahliae. Phytochemistry 47:961-967, 1998.

    Aubourg, S.; Lecharny, A.; and Bohlmann, J. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol. Genet. Genom. 267:730-745, 2002.

    Bergström, G.D.; Dobsen H.E.M. Groth, I. Spatial fragrance patterns within the flowers of Ranunculus acris (Ranunculaceae). Plant Syst. Evol. 195:221-242, 1995.

    Bohlmann, J.; Gauen, G.M.; and Croteau, R. Plant terpenoid synthases: Molecular biology and phylogenetic analysis. Proc. Natl. Acad. Sci. 95:4126-4133, 1998.

    Bohlmann, J.; Martin, D.; Oldham, N.J.; and Gershenzon, J. Terpenoid secondary metabolism in Arabidopsis thaliana: cDNA cloning, characterization, and functional expression of a myrcene/(E)-beta-ocimene synthase. Arch. Biochem. Biophys. 375:261-269, 2000.

    Chen, F.; Tholl, D.; D'Auria, J.C.; Farooq, A.; Pichersky, E.; and Gershenzon, J. Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell 15:481-494, 2003.

    Crock, J.; Wildung, M.; and Croteau, R. Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha x piperita, L.) that produces the aphid alarm pheromone (E)-beta-farnesene. Proc. Natl. Acad. Sci. 94:12833-12838, 1997.

    Davis, E.M.; and Croteau, R. Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. Top. Curr. Chem. 209: 53-95, 2000.

    Degenhardt, J., and Gershenzon, J. Demonstration and characterization of (E)-nerolidol synthase from maize: a herbivore-inducible terpene synthase participating in (3E)-4,8-dimethyl-1,3,7-nonatriene biosynthesis. Planta 210:815-822, 2000.

    Deguerry, F.; Pastore, L.; Wu, S.; Clark, A.; Chappell, J.; and Schalk, M. The diverse sesquiterpene profile of patchouli, Pogostemon cablin, is correlated with a limited number of sesquiterpene synthases. Arch. Biochem. Biophys. 454:123-136, 2006.

    Dudareva, N.; Martin, D.; Kish, C.M.; Kolosova, N.; Gorenstein, N.; Faldt, J.; Miller, B.; and Bohlmann, J. (E)-beta-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell 15:1227-1241, 2003.

    Dudareva, N.; and Pichersky, E. Biochemical and molecular genetic aspects of floral scents. Plant Physiol. 122:627-633, 2000.

    El Tamer, M.K.; Lucker, J.; Bosch, D.; Verhoeven, H.A.; Verstappen, F.W.; Schwab, W.; van Tunen, A.J.; Voragen, A.G.; de Maagd, R.A.; and Bouwmeester, H.J. Domain swapping of Citrus limon monoterpene synthases: impact on enzymatic activity and product specificity. Arch. Biochem. Biophys. 411:196-203, 2003.

    Faldt, J.; Martin, D.; Miller, B.; Rawat, S.; and Bohlmann, J. Traumatic resin defense in Norway spruce (Picea abies): methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase. Plant Mol. Biol. 51:119-133, 2003.

    Griffiths, D.W.; Robertson, G.W.; Shepherd, T.; Birch, A.N.; Gordon, S.C.; and Woodford, J.A. A comparison of the composition of epicuticular wax from red raspberry (Rubus idaeus L.) and hawthorn (Crataegus monogyna Jacq.) flowers. Phytochemistry 55:111-116, 2000.

    Guterman, I.; Shalit, M.; Menda, N.; Piestun, D.; Dafny-Yelin, M.; Shalev, G.; Bar, E.; Davydov, O.; Ovadis, M.; Emanuel, M.; Wang, J.; Adam, Z.; Pichersky, E.; Lewinsohn, E.; Zamir, D.; Vainstein, A.; and Weiss, D. Rose scent: genomics approach to discovering novel floral fragrance-related genes. Plant Cell 14:2325-2338, 2002.

    Hsiao, Y.Y.; Tsai, W.C.; Kuoh, C.S.; Huang, T.H.; Wang, H.C.; Wu, T.S.; Leu, Y.L.; Chen, W.H.; and Chen, H.H. Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway. BMC Plant Biol. 6:1-14, 2006.

    Iijima, Y.; Davidovich-Rikanati, R.; Fridman, E.; Gang, D.R.; Bar, E.; Lewinsohn, E.; and Pichersky, E. The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. Plant Physiol. 136:3724-3736, 2004.

    Kaiser, R. The Scent of Orchids: Olfactory and Chemical Investigations (Hardcover) Amsterdam: Elsevier 1992.

    Knudsen, J.T.; Tollsten, L.; and Bergstrom, L.G. Floral scents: A checklist of volatile compounds isolated by headspace techniques. Phytochemistry 33:253- 280, 1993.

    Knudsen, J.T.; Tollsten, L.; and Ervik, F. Flower scent and pollination in selected neotropical palms. Plant Biol. 3:642-653, 2001.

    Kollner, T.G.; Schnee, C.; Gershenzon, J.; and Degenhardt, J. The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes. Plant Cell 16:1115-1131, 2004.

    Lange, B.M.; Wildung, M.R.; McCaskill, D.; and Croteau, R. A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway. Proc. Natl. Acad. Sci. 95:2100-2104, 1998.

    Lin, X.; Hezari, M.; Koepp, A.E.; Floss, H.G.; and Croteau, R. Mechanism of taxadiene synthase, a diterpene cyclase that catalyzes the first step of taxol biosynthesis in Pacific yew. Biochemistry 9:2968-2977, 1996.

    Lucker, J.; Bowen, P.; and Bohlmann, J. Vitis vinifera terpenoid cyclases: functional identification of two sesquiterpene synthase cDNAs encoding (+)-valencene synthase and (S)-germacrene D synthase and expression of mono- and sesquiterpene synthases in grapevine flowers and berries. Phytochemistry 65: 2649-2659, 2004.

    Luo, P.; Wang, Y.H.; Wang, G.D.; Essenberg, M.; and Chen, X.Y. Molecular cloning and functional identification of (+)-delta-cadinene-8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. Plant J. 28:95-104, 2001.

    McConkey, M.; Gershenzon, J.; and Croteau, R. Developmental regulation of monoterpene biosynthesis in the glandular trichomes of peppermint. Plant Physiol. 122: 215–223, 2000.

    McGarvey, D.J.; and Croteau, R. Terpenoid metabolism. Plant Cell 7:1015-1026, 1995.

    Picaud, S.; Olofsson, L.; Brodelius, M.; and Brodelius, P.E. Expression, purification, and characterization of recombinant amorpha-4,11-diene synthase from Artemisia annua L. Arch. Biochem. Biophys. 436:215-226, 2005.

    Pichersky, E., and Gershenzon, J. The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 5:237-243, 2002.

    Pichersky, E.; Noel, J.P.; and Dudareva, N. Biosynthesis of plant volatiles: nature's diversity and ingenuity. Science 311:808-811, 2006.

    Prisic, S.; Xu, M.; Wilderman, P.R.; and Peters, R.J. Rice contains two disparate ent-copalyl diphosphate synthases with distinct metabolic functions. Plant Physiol. 136:4228-4236, 2004.

    Raguso, C.A.; Coggan, A.R.; Gastaldelli, A.; Sidossis, L.S.; Bastyr, E.J., 3rd; and Wolfe, R.R. Lipid and carbohydrate metabolism in IDDM during moderate and intense exercise. Diabetes 44:1066-1074, 1995.

    Raguso, R.A.; Levin, R.A.; Foose, S.E.; Holmberg, M.W.; and McDade, L.A. Fragrance chemistry, nocturnal rhythms and pollination "syndromes" in Nicotiana. Phytochemistry 63:265-284, 2003.

    Rasmann, S.; Kollner, T.G.; Degenhardt, J.; Hiltpold, I.; Toepfer, S.; Kuhlmann, U.; Gershenzon, J.; and Turlings, T.C. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732-737, 2005.

    Schnee, C.; Kollner, T.G.; Gershenzon, J.; and Degenhardt, J. The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-beta-farnesene, (E)-nerolidol, and (E,E)-farnesol after herbivore damage. Plant Physiol. 130:2049-2060, 2002.

    Schnee, C.; Kollner, T.G.; Held, M.; Turlings, T.C.; Gershenzon, J.; and Degenhardt, J. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc. Nat. Acad. Sci. 103:1129-1134, 2006.

    Sharon-Asa, L.; Shalit, M.; Frydman, A.; Bar, E.; Holland, D.; Or, E.; Lavi, U.; Lewinsohn, E.; and Eyal, Y. Citrus fruit flavor and aroma biosynthesis: isolation, functional characterization, and developmental regulation of Cstps1, a key gene in the production of the sesquiterpene aroma compound valencene. Plant J. 36:664-674, 2003.

    Shimada, T.; Endo, T.; Fujii, H.; Hara, M.; Ueda, T.; Kita, M.; and Omura, M. Molecular cloning and functional characterization of four monoterpene synthase genes from Citrus unshiu marc. Plant Sci. 166:49-58, 2004.

    Steele, C.L.; Crock, J.; Bohlmann, J.; and Croteau, R. Sesquiterpene synthases from grand fir (Abies grandis). Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of delta-selinene synthase and gamma-humulene synthase. J. Biol. Chem. 273:2078-2089, 1998.

    Steele, C.L.; Crock, J.; and Croteau, R. Sesquiterpene Synthases from Grand Fir (Abies grandis) J. Biol. Chem. 273:2078-2089, 1998.

    Tholl, D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr. Opin. Plant Biol. 9:297-304, 2006.

    Tholl, D.; Chen, F.; Petri, J.; Gershenzon, J.; and Pichersky, E. Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J. 42:757-771, 2005.

    Tsai, W.C.; Kuoh, C.S.; Chuang, M.H.; Chen, W.H.; and Chen, H.H. Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol. 45:831-844, 2004.

    Tsai, W. C.; Hsiao, Y. Y.; Lee, S. H.; Tung, C. W.; Wang, D. P.; Wang, H. C.; Chen, W. H.; and Chen, H. H. Expression analysis of the ESTs derived from the flower buds of Phalaenopsis equestris. Plant Sci. 170:426–432, 2006.

    Vogeli, U.; and Chappell, J. Induction of sesquiterpene cyclase and suppression of squalene synthetase activities in plant cell cultures treated with fungal elicitor. Plant Physiol. 88:1291-1296, 1988.

    Xu, M.; Wilderman, P.R.; and Peters, R.J. Following evolution's lead to a single residue switch for diterpene synthase product outcome. Proc. Natl. Acad. Sci. 104:7397-7401, 2007.

    下載圖示 校內:2017-08-30公開
    校外:2017-08-30公開
    QR CODE