簡易檢索 / 詳目顯示

研究生: 丁嘉賢
Ting, Chia-Hsien
論文名稱: 土石流撞擊防砂壩之力學特性試驗研究
Impulsive Force Resulted from Debris Flow Acting on the Sabo Dam
指導教授: 謝正倫
Shieh, Chjeng-Lun
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 166
中文關鍵詞: 防砂壩衝擊力土石流數值模擬
外文關鍵詞: impulsive force, debris flow, sabo dam, simulation
相關次數: 點閱:83下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 防砂壩在河川及集水區治理上,扮演著非常重要之角色,它一方面能約束流心減少側岸侵蝕,也能降低河道縱坡減少河床沖刷,穩定兩岸山腹,是傳統以來治山防洪常用的手段,亦是土石流攔阻工程中最常使用的工法之一,且建造位置大多位於野溪中、上游處,所建造的型式大多採封閉式或開放式的直立型與斜面型重力式防砂壩為主,但經由現地調查發現防砂壩在攔阻土石流時,壩體因所受土石流衝擊力量強大,常有毀損情況發生,因此需對防砂壩的型式重新檢討。目前防砂壩之設計也因施工方法的進步,漸漸的朝向較經濟(所用材料較省)、較穩定(所受力量較小)之方向去評估比較。本文構想朝藉由改變壩體上游壩面之幾何形狀,使得土石流作用於壩體之衝擊時間增加以減少受力,並能分散部份土石流衝擊力,增加壩體之穩定性,以期提供未來土石流防砂壩設計之參考依據。因此本文分別以實驗研究及數值模擬研究兩種方式探討防砂壩幾何型式對土石流衝擊力與衝擊過程的影響,以及囚砂率的變化。
    由土石流對防砂壩衝擊過程之實驗結果顯示,土石流對壩體衝擊力大小深受壩體幾何形狀的影響,斜面與曲面壩因壩面路徑較直立壩長,使得土石流在壩體上作用時間變長,加上斜面壩斜面出流角度及曲面壩曲面曲率的變化,使得撞擊時流體延渠道方向之動量變化較直立壩小,因此斜面與曲面壩整體受力皆較直立壩小。在實驗結果分析方面,三種壩體於不同實驗條件下衝擊力實測值與理論值均有不錯的相關性,因此本研究所推得之三種壩體受力理論式可描述實驗的結果。
    在模擬結果分析方面,壩體受土石流衝擊初期以動壓力為主、靜壓力為輔,之後漸漸地受到回水消能的影響,使得壩前流體流速減緩而逐漸以靜壓力為主、動壓力為輔,最後等到水面趨於平穩時,此時壩體僅受靜壓力作用。總力比較方面,直立壩所受總力為最大,斜面壩次之,曲面壩為最小;動壓力比較方面,直立壩所受動壓力為最大,斜面壩次之,曲面壩為最小;土石流動壓作用的持續時間比較方面,直立壩因回水情況最早發生且回水量最大,因此受土石流動壓作用的持續時間為最短,曲面壩次之,斜面壩為最長;靜壓力比較方面,直立壩因回水量最大,因此所受靜壓力為最大,曲面壩次之,斜面壩為最小;而回水量越多,則囚砂率相對也越高,因此囚砂率以直立壩為最高,曲面壩其次,斜面壩為最低。
    實驗與模擬結果顯示,壩體所受土石流衝擊力之大小深受幾何形狀的影響,曲面壩因壩面呈弧形的特性,使得土石流流經路徑為最長且具曲率變化,因此當土石流衝擊壩體時,除使土石流作用於壩體之衝擊時間增加以減少受力,並能夠藉由曲率的變化分散部份衝擊力,因此所受之土石流衝擊力較其他兩種壩體小。

    For river and basin management, it is important to construct Sabo dams in rivers since they can restrict the channel center line, reduce river bank erosion, and secure hillsides. As such, they are a common method for mountain management and flood disaster prevention. Although Sabo dams are an efficient method for river and basin management, such dams are hit and often damaged by great impulsive force when they block the debris flow. This study analyzed the impulsive force of debris flow on sabo dams with different geometric shapes in order to identify the optimal design for reducing the impulsive force, enhancing stability and minimizing the use of concrete. Therefore, alternative shapes for Sabo dam deserve thorough investigation. In this investigation, a curved dam was designed by changing the upstream-dam-surface geometric shape to reduce the impulsive force of the debris flow, with enhanced stability and reduced concrete mass being the anticipated outcomes.
    In this study, the flume and laboratory facilities simulated the impulsive force of the debris flow to the Sabo dams. Three geometric forms, including vertical, slanted and curved Sabo dams, were used to determine the impulsive force. Impulsive force theories of the debris flow were derived from the continuity equation, the momentum equation and the Bernoulli equation. In these, the impulsive force was balanced by the friction force of the Sabo dam and the opposite force of the load cell behind the dam as it was hit by the debris flow. Positive correlations were found when comparing the experimental data with the theoretical results. These findings suggest that the impulsive force theory has predictive validity with regard to the experimental data. This study also presents a three dimensional computational fluid dynamics model using the commercial software FLUENT and FLOW-3D to simulate the impulsive force of debris flow on sabo dams. The simulation revealed the velocity field, distribution of pressure on the dam surface and the forces exerted on the body of the dam.
    Based on the experimental and simulation results, the impact geometry has a significant effect on the impulsive force. The time duration of the impact on the dam is longer, and the force impacted on the dam is less. The results clearly show that curved dams exert relatively less force when discharge is large because their arc-shaped dam surfaces produce a long and meandering path of debris flow. Thus, curved dams not only deflect the flow of debris into the dam body, they also lengthen the period of impact, which disperses the impulsive force by means of its changing curvature. Hence, the curved dam exhibits less debris flow-induced impulsive force than the other two designs.

    中文摘要 I 英文摘要 III 誌謝 V 目錄 IX 表目錄 XIII 圖目錄 XIV 照片目錄 XIX 符號說明 XX 第一章 緒論 1 1-1 前言 1 1-2 研究動機及目的 2 1-3 文獻回顧 3 1-3-1 土石流衝擊力實驗相關研究 3 1-3-2 土石流數值模擬相關研究 11 1-4 研究流程與架構 13 第二章 理論分析 15 第三章 土石流對防砂壩衝擊過程之實驗研究 20 3-1實驗設備與率定 20 3-1-1 實驗渠道 20 3-1-2 實驗儀器 27 3-1-3 荷重計率定 28 3-2實驗條件 33 3-2-1 流量之設定 33 3-2-2 渠道坡度之設定 33 3-2-3 土石材料之選定 34 3-2-4 渠道底床摩擦角之設定 35 3-2-5 實驗編號之設定 35 3-3 實驗方法及流程 36 3-4 土石流衝擊防砂壩過程之實驗結果 38 第四章 土石流對防砂壩衝擊過程之數值實驗 50 4-1模式之基礎理論 50 4-1-1 FLUENT Model 50 4-1-2 FLOW-3D Model 52 4-2 FLUENT之模擬 55 4-2-1模組選定與求解設定 55 4-2-2 基本方程式 56 4-2-3 數值模型網格建置 59 4-2-4 初始條件與邊界條件 62 4-2-5 參數設定與驗證 63 4-2-6 模擬結果 65 4-3 FLOW-3D之模擬 80 4-3-1模組選定與求解設定 80 4-3-2 基本方程式 81 4-3-3 數值模型與網格建置 85 4-3-4 初始條件與邊界條件 88 4-3-5參數設定與驗證 89 4-3-6 模擬結果 90 第五章 實驗與模擬結果分析與討論 100 5-1 Fluent模擬結果 100 5-1-1 總壓力分析 100 5-1-2 動壓力分析 105 5-1-3 靜壓力分析 111 5-1-4壩面壓力中心最高位置與最大合力位置分析 116 5-2 Flow-3D模擬結果 118 5-2-1 總壓力分析 118 5-2-2 求砂率分析 124 5-3 工程應用 131 第六章 結論與建議 135 6-1 結論 135 6-2 建議 140 參考文獻 141 附錄A 附圖 151 附錄B 附照 162 附錄C 附表 163 個人簡歷 165

    1. Abdolmaleki, K., Thiagarajan, P. and Morris-Thomas, M. T.. “Simulation of the dam break problem and impact flows using a Navier-Stokes solver.” 15th Australasian Fluid Mechanics Conference, The University of Sydney, Sydney, Australia, pp. 13-17, 2004.
    2. Armanini, A. and Scotton, P.. “Experimental analysis on the dynamic impact of a debris flow on structures.” Proceedings of the International Symposium 6th INTERPREAVENT, Bern, Switzerland, Vol. 6, pp. 107-116, 1992.
    3. Armanini A. and Scotton P.. “On the dynamic impact of a debris flow on structures.” Proc. of XXV Congress of IAHR, Technical Session B, Debris Flow and Landslides, Vol. 3, pp. 203−210, 1993.
    4. Armanini, A.. “Chapter 3: Control Measures for Debris Flows- On the dynamic impact of debris flows.” Lecture Notes in Earth Sciences, Springer Berlin / Heidelberg, Vol. 64, pp. 208-226, 1997.
    5. Busnelli, M. M., Stelling, G. S., and Larcher, M.. “Numerical morphological modeling of open-check dams.” Journal of Hydraulic Engineering, Vol. 127, No. 2, pp. 105-114, 2001.
    6. Chen, H. K. and Tang, H. M.. “Method to calculate impact force and impact time of two-phase debris flow.” Chinese Journal of Highway and Transport, Vol. 19, No. 3, pp. 19-23, 2006.
    7. Coussot, P.. “Mudflow rheology and dynamics.” IAHR Monograph, Balkema, Rotterdam, 225 pp., 1997.
    8. Inc., F.. “FLUENT 6.2 User Guide.” Fluent Inc. Press. Centerra Resource Park 10 Cavendish Court Lebanon, NH 03766, 2005.
    9. Inc., F. S.. “FLOW-3D User Manual.” Flow Science, Inc., 2007.
    10. Haehnel, R. B. and Daly, S. F.. “Maximum impact force of woody debris on floodplain structures.” Journal of Hydraulic Engineering, Vol. 130, No. 2, pp. 112 -120, 2004.
    11. Haukssona, S., Pagliardib, M., Barbolinib, M and Jóhannessonc, T.. “Laboratory measurements of impact forces of supercritical granular flow against mast-like obstacles.” Cold Regions Science and Technology, Vol. 49, No. 1, pp. 54-63, 2007.
    12. He, S. M., Li, X. P. and Wu, Y.. “Calculation of impact force of outrunner blocks in debris flow considering elastoplastic deformation.” Chinese Journal of Rock Mechanics and Engineering, Vol. 26, No. 8, pp. 1664-1669, 2007.
    13. Hioki, S., Ote, K., Hiura, T., Okumura, M. and Tomimasu, E.. “Studies on mad-flow (III)-Test on distribution of impact energy”. Journal of the Japan Society of Erosion Control Engineering, Vol. 26, No. 1, pp. 7-16, 1973. (in Japanese)
    14. Hiroharu, T.. “Experimental studies on the design of sabo dam against mudflow (1) - Experiments on the artificial flood wave-. ” Journal of the Japan Society of Erosion Control Engineering,Vol.24, No.2, pp. 5-13, 1971. (in Japanese)
    15. Huang, H. P., Yang, K. C. and Lai, S. W.. “Impact forces of debris flow on filter dam.” Geophysical Research Abstracts, European Geosciences Union, Vol. 9, 03218, 2007.
    16. Hübl, J. and Steinwendtner, H.. “Two-dimensional simulation of two viscous debris flows in Austria.” Physical Chemical Earth (C), Vol. 26, No. 9, pp. 639-644, 2001.
    17. Hungr, O., Morgan, G.C., Kellerhals, R.. “Quantitative analysis of debris torrent hazard for design of remedial measures.” Canadian Geotechnical Journal, Vol. 21, pp. 663-677, 1984.
    18. Liu, K. F., Lee, F. C. and Tsai, H. P.. “The flow field and impact force on a debris dam.” Proceeding of the 1st International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, ASCE, pp. 737-746, 1997.
    19. Miyoshi, I. and Suzuki, M.. “Experimental study on impact load on a dam due to debris flow.” Journal of the Japan Society of Erosion Control Engineering, Vol. 43, No. 2, pp. 11-19, 1990. (in Japanese)
    20. Mizuyama, T.. “Computational method and some considerations on impulsive force of debris flow acting on sabo dams.” Journal of the Japan Society of Erosion Control Engineering, Vol. 112, pp. 40-43, 1979. (in Japanese)
    21. Mizuyama, T., Ishikawa, Y.. “Prediction of debris flow prone areas and damage.” In: French, R.H. (Ed.), Hydraulics/Hydrology of Arid Lands. ASCE, New York, pp. 712-715, 1990.
    22. Mizuyama, T., Shimohigashi, H. and Shimoda, Y.. “Impact force of debris flow to concrete sabo structures with shock absorbers.” Journal of the Japan Society of Erosion Control Engineering, Vol. 38, No. 3, pp. 3-11, 1985. (in Japanese)
    23. Montrasio, L and Valentino R.. “Experimental and numerical analysis of impact forces on structures due to a granular flow.” Management Information Systems, Vol. 9, pp. 267-276, 2004.
    24. Nakano, M. and Ukon, N.. “Experiment on the impact force of collapsed sandy soil mass.” Journal of the Japan Society of Erosion Control Engineering, Vol. 39, No. 1, pp. 17-23, 1986. (in Japanese)
    25. O'Brien, J. S., Julien, P. Y. and Fullerton, W. T.. “Two-dimensional water flood and mudflow simulation.” Journal of Hydraulic Engineering, Vol. 119, No. 2, pp. 244-261, 1993.
    26. Proske, D., Kaitna, R., König, U. and Hübl, J.. “Development of design Impact forces of debris flow.” Geophysical Research Abstracts, European Geosciences Union, Vol. 9, 01277, 2007.
    27. Rodriguez, J. F., Bombardelli, F. A., Garcia, M. H., Frothingham, K. M., Rhoads, B. L. and Abad, J. D.. “High-resolution numerical simulation of flow through a highly sinuous river reach.” Water Resources Management, Vol. 18, pp. 177-199, 2004.
    28. Scotton, P. and Deganutti A., M.. “Phreatic line and dynamic impact in laboratory debris flow experiments.” Proceeding of the 1st International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, ASCE, pp. 777 ~ 786, 1997.
    29. Shieh, C. L., Ting, C. H., and Pan, H. W.. ” The impulsive force of debris flow on a curved dam.” , Disaster Mitigation of Debris Flows, Slope Failures, and Landslides, INTERPRAEVENT, Japan, Vol. 1, pp. 177-186, 2006.
    30. Shieh, C. L., Ting, C. H., and Liu, D.H.. ” The impulsive force of debris flow on a curved-slit dam.”, Geophysical Research Abstracts, European Geosciences Union, Vol. 9, 08406, 2007.
    31. Shieh, C. L., Ting, C. H. and Pan, H. W.. “Impulsive force of debris flow on a curved dam.” International Journal of Sediment Research, Vol. 23, No. 2, pp. 156-165, 2008.
    32. Valentino, R., Barla, G. and Montrasio, L.. “Experimental analysis and micromechanical modelling of dry granular flow and impacts in laboratory flume tests.” Rock Mechanics Rock Engineering , Vol. 41, No. 1, pp. 153-177, 2008.
    33. Wei, H.. “Experimental study on impact force of debris flow heads.” China Academy of Railway Sciences , Vol. 17, No. 3, pp. 50- 62, 1996.
    34. Yu, F. C.. “A study on the impact force of debris-flow”. Proceedings of the National Science Council (Part A:Physical Science and Engineering), Vol. 16, No. 1, pp. 32-39, 1992.
    35. Zanchetta, G., Sulpizio, R., Pareschi, M.T., Leoni, F.M. and Santacroce, R.. “Characteristics of May 5-6, 1998 volcaniclastic debris flows in the Sarno area (Campania, Southern Italy): Relationships to structural damage and hazard zonation.” Journal of Volcanology and Geothermal Research, Vol. 133, pp. 377-393, 2004.
    36. Zanuttigh, B. and Lamberti, A.. “Experimental analysis of the impact of dry avalanches on structures and implication for debris flows.” Journal of Hydraulic Research, Vol. 44, No. 4, pp. 522-534, 2006.
    37. Zhang, S.. “A comprehensive approach to the observation and prevention of debris flows in China.” Natural Hazards, Vol. 7, No. 1, pp. 1-23, 1993.
    38. Zhang, Y., Wei, F. Q. and Wang, Q.. “ Experimental Research of Reinforced Concrete Buildings Struck by Debris Flow in Mountain Areas of Western China.” Wuhan University Journal of Natural Sciences, Vol. 12, No. 4, pp. 645-650, 2007.
    39. 丁嘉賢,「土石流對防砂壩衝擊力之研究」,國立成功大學水利及海洋工程學系碩士論文,2002。
    40. 王福軍,「計算流體動力學分析-CFD軟件原理與應用」,清華大學出版社,2006。
    41. 下田義文、鈴木真次、石川信隆、古川浩平,「個別要素法によるコンクリート製砂防ダムの衝撃破壊シミュレーション解析」,土木學會論文集No.480/VI-21, 第97¬-106頁,1993。(日文)
    42. 山口伊佐夫,「防砂工程學」,國立台灣大學森林學系譯,台北,第150-174頁,1985。
    43. 山口伊佐夫,「現代林學講義」,砂防工學,第71- 80頁,1985。
    44. 水土保持局,「水土保持手冊」,中華水土保持學會,2006。
    45. 水山高久、下東久已、中西宏、松村和樹,「鋼管製透過型砂防ダムに對する土石流荷重に關する實驗研究」,新砂防,第三十七號,第30-34頁,1985。(日文)
    46. 水山高久,「土石流之實驗相似性」,新砂防,第四十六卷,第三期,第35-39頁,1993。(日文)
    47. 仲野公章、右近則男,「砂質崩土の衝擊力に關する實驗研究」,新砂防,第一百四十四號,第17-23頁,1985。(日文)
    48. 行政院農業委員會,「水土保持技術規範」,2002。
    49. 呂典翰,「土石流對梳子壩衝擊力之研究」,國立成功大學水利及海洋工程學系碩士論文,2005。
    50. 李坤政,「陡坡明渠紊流特性之數值模擬」,國立中興大學土木工程研究所碩士論文,2000。
    51. 李峰昌,「土石流對阻礙物之衝擊力研究」,國立台灣大學土木工程學系碩士論文,1995。
    52. 何敏龍,「土石流發生機制與流動制止結構物之研究」,國立台灣大學土木工程學系碩士論文,1997。
    53. 余政璟,「土石流防治工法之研究-凹壩與防砂壩」,國立台灣大學土木工程學系碩士論文,1997。
    54. 杜鳳棋譯,「流體力學」,高立圖書有限公司,1996。
    55. 林弘群,「不同形式攔砂壩所受土石流衝擊力之研究」,國立中興大學土木工程學系碩士論文,1994。
    56. 林明鋒,「喇叭型進水口三維流場模擬」,國立成功大學水利及海洋工程學系碩士論文,2006。
    57. 林炳森、林基源,「土石流之衝擊力與防治工法介紹」,地工技術,第七十四期,第67-80頁,1999。
    58. 林炳森、林基源,「土石流衝擊力與環境因子監測技術之研究」,行政院國家科學委員會專題研究計畫成果報告,2003。
    59. 林群和,「柔性構造物承受土石流衝擊特性之研究」,國立中興大學土木工程學系碩士論文,2003。
    60. 林億哲、黃宏斌,「梳子壩巨礫撞擊力試驗分析」,農業工程研討會論文集,2006。
    61. 林億豐,「原水監測水槽效能改善之流場分析」,國立成功大學水利及海洋工程學系碩士論文,2005。
    62. 林澤松,「梳子壩攔阻土石流效果之模擬研究」,逢甲大學水利工程研究所碩士論文,2005。
    63. 段錦浩、林明威、黃立勳,「廢輪胎材料對土石流撞擊力消能之研究」,中華水土保持學報,第三十五卷,第二期,第151-163頁,2004。
    64. 高橋宏治,「土石流に對應する砂防ダムの設計荷重は關する研究:人工洪水波發生實驗」,新砂防,第八十一號,第5-13頁,1971。(日文)
    65. 高梨和行、村岡俊丸、佐藤義晴,「立體格子型鋼制製砂防ダムの機能にっぃて」,新砂防,第一百四十八號,第4-11頁,1987。(日文)
    66. 陳致穎,「梳子壩與受土石流衝擊時動態行為之研究」, 國立中興大學土木工程學系碩士論文,2000。
    67. 張世樺,「不同監測儀器應用於土石流衝擊特性分析之研究」,國立中興大學土木工程學系碩士論文,2001。
    68. 渡邊正幸、水山高久、上原信司,「土石流對策砂防設施に關する檢討」,新砂防,第一百一十五號,第40-45頁,1980。(日文)
    69. 游繁結,「崩落型土石流之機制研究(Ⅱ)土石流衝擊力之探討」,行政院國家科學委員會防災科技研究報告,NSC-79-0414-P005-04B,1990。
    70. 黃宏斌、楊凱鈞、賴紹文,「土石流對梳子壩之撞擊力研究」,台灣水利,第五十五卷,第一期,第41-58頁,2007。
    71. 黃育珍,「混凝土梳子攔阻功效之研究」,國立中興大學土木工程學系碩士論文,1999。
    72. 黃聰憲,「漏斗式排砂器水流特性及排砂效率之試驗研究」,國立成功大學水利及海洋工程學系碩士論文,2007。
    73. 楊政翰,「FLOW-3D應用於土石流防砂壩前流場及衝擊力研究」,國立成功大學水利及海洋工程學系碩士論文,2008。
    74. 詹錢登,「土石流概論」,科技圖書,2000。
    75. 詹傑民、吳春亮、蘇煒、詹勝、劉暢、刁國瑜,「水壩在水流作用下動力附應的一種分析方法」,應用力學學報,第二十二卷,第四期,第585-588頁,2005。
    76. 鄭坤仁,「開口變化梳子壩之力學分析」,國立中興大學水土保持學系碩士論文,2001。
    77. 鄭坤仁、陳虹合、段錦浩,「開口變化梳子壩之力學分析」,中華水土保持學報,第三十三卷,第三期,第181-206頁,2001。
    78. 潘鴻文,「土石流對攔砂壩衝擊力與穩定性之初步研究」,國立成功大學水利及海洋工程學系碩士論文,2004。
    79. 劉格非,「攔阻土石流結構物上受力之研究」,行政院國家科學委員會專題研究計畫成果報告,1994。
    80. 劉格非、李峰昌,“石流撞擊機制之試驗分析”力學期刊,第十三卷,第一期,第87-100頁,1997。
    81. 劉展光,「薄壁鎂合金筆記型電腦上蓋之壓鑄模澆流道設計分析」,國立交通大學機械工程研究所碩士論文,2002。
    82. 蕭建源,「梳子壩所受土石流衝擊力之研究」,國立中興大學土木工程學系碩士論文,1994。
    83. 賴佳伴,「開放式攔砂壩攔阻功效之研究」,國立中興大學土木工程學系碩士論文,1995。
    84. 賴紹文,「含砂水流之梳子壩撞擊力試驗分析」,國立台灣大學生物環境系統工程學研究所碩士論文,2004。
    85. 賴紹文、黃宏斌,「含砂水流之梳子壩撞擊試驗分析」,農業工程研討會論文集,2005。
    86. 錢寧、萬兆惠,「泥沙運動力學」,科學出版社,中國大陸,1991。
    87. 韓占忠、王敬、藍小平,「FLUENT流體工程仿真計算實例與應用」,北京理工大學出版社,2005。
    88. 聶志成,「應用Fluent於土石流對防砂壩衝擊力之研究」,國立成功大學水利及海洋工程學系碩士論文,2007。
    89. 瀨尾克美、水山高久、上原信司,「砂防ダムにょる土石流の制御に關する實驗研究」,新砂防,第一百二十九號,第17-23頁,1983。(日文)

    下載圖示 校內:立即公開
    校外:2009-06-29公開
    QR CODE