簡易檢索 / 詳目顯示

研究生: 鍾澤華
Chung, Tse-Hua
論文名稱: 數位合作學習之自動化人格辨識研究
On Automatic Personality Pattern Recognition for Collaborative e-Learning
指導教授: 陳裕民
Chen, Yuh-Min
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 69
中文關鍵詞: 數位合作式學習人格辨識說話風格擷取團隊組成
外文關鍵詞: Collaborative e-Learning, Personality Classification, Speaking Styles Extraction, Team Formation
相關次數: 點閱:91下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,合作式學習已被廣泛採用並有不錯之成效。隨著網際網路技術之普及與電腦科技之進步,網路式合作學習(Collaborative e-Learning)也因應而生。數位合作式學習團隊成員在團隊中所擔任之角色常直接或間接影響整體團隊之學習成效。過去,透過問卷了解參與者人格特質,再安排其角色;然而,填寫問卷過程耗時,對分散且需頻繁討論的學習團隊來說,如何即時、有效率的辨識學習成員之人格特質,並依照其個性賦予適當之角色,為當前數位合作學習之重要課題。
    本研究研發一數位合作學習之自動化人格辨識研究機制,透過分析數位合作式學習成員之對話內容找到其對應之人格類型(NEO-FFI),以利合作式團隊學習時角色適性化之安排。本研究首先建立數位合作式學習平台,以問卷方式取得學習者人格類型及對應談話內容,並以此資料作為人格分類器訓練資料;再將談話內容轉換成三種不同類型詞性,利用搭配詞(collocation)之概念找出人格類型在三種不同詞性組合下對應的說話風格,以此作為人格類型分類之特徵(feature);接著以term frequency–inverse document frequency作為特徵篩選方式並以支持向量機(Support Vector Machine,SVM)作為訓練人格分類器之方法,最後以此分類器辨識判斷學習者之人格類型,以利安排適合各學習者特質之團隊角色。根據本研究之分類器結果,在以上位詞為基礎之人格分類器下,整體分類準確度可達86%。

    Over the past few decades, collaborative learning has been widely utilized in learning with favorable and positive results. With the advanced Internet technology, collaborative e-Learning has become a trend of learning. Collaborative learning involves forming “learning teams.” However, traditional learning team formation based on time-consuming personality tests seems not practical for collaborative eLearning. Figuring out a method to effectively identify team members’ personality traits for role assignments is a challenge in collaborative e-Learning.
    The purpose of this study is to develop an Automatic Personality Pattern Recognition Mechanism (APPR) where, through the analysis of each learner’s dialogue, certain type of personality (NEO-FFI) is identified for role assignments in forming a learning team. Firstly, a collaborative e-learning platform was developed in which personality types with corresponding dialogue transcripts were collected. Secondly, these dialogue transcripts were converted into three different types of parts-of-speech, with which the concept of collocation was used to find the difference in how these parts-of-speech were used by people of different personality types. By them, personality types were categorized. Thirdly, term frequency–inverse document frequency was used as a screening method for features extraction and personality types were classified through SVM (Support Vector Machine) as a training stage. Lastly, using this personality identification mechanism, collaborative e-learning teams were formed with each individual learner assigned a role in a respective group in accord with his/her personality type. Empirical results showed that proposed APPR can identify personality types with overall classification accuracy up to 86%.

    摘要 I Abstract II 致謝 III 目錄 Ⅳ 圖目錄 Ⅵ 表目錄 Ⅶ 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 1 1.3 研究目的 2 1.4 問題分析 3 1.5 研究項目與方法 4 1.6 研究步驟 6 1.7 論文架構 7 第二章 文獻探討 8 2.1 合作式學習 8 2.1.1 網路合作式學習 9 2.1.2 網路合作式學習系統 10 2.2 團隊與團隊角色 12 2.2.1 實體團隊的定義 13 2.2.2 虛擬團隊的定義 13 2.2.3 成功團隊之影響因素 14 2.3人格特質 14 2.3.1 人格特質定義 14 2.3.2 五大人格特質 15 2.3.3 人格特質辨識方法 16 2.4 說話風格 18 2.4.1 說話風格相關理論 18 2.4.2 說話風格相關萃取方法 18 2.5 自動分類技術 19 2.5.1 貝式分類法 19 2.5.2 決策樹 20 2.5.3 類神經網路 21 2.5.4 支持向量機 22 2.6 小結 23 第三章 機制架構設計 25 3.1 支援數位合作式學習之人格辨識模式設計 25 3.2 自動化人格類型辨識機制 27 第四章 自動化人格辨識機制核心元件設計 30 4.1說話風格轉換 30 4.1.1 內容前處理(Content Pre-processing) 30 4.1.2 特殊詞標記(Specific POS Tagging) 32 4.1.3精簡詞類標記(Simplified POS Tagging) 33 4.1.4 上位詞標記 34 4.2 說話風格萃取模式 35 4.2.1 結構分析 36 4.2.2 共現元素萃取 37 4.2.3 樣式評估 39 4.3 人格類型分類模型建立 40 4.3.1 特徵轉換 41 4.3.2 特徵選取 41 4.3.3 分類模型訓練 42 4.3.4 正確性評估 43 第五章 實驗結果與分析 44 5.1 數位合作式學習平台運作流程 44 5.1.2 系統架構 45 5.1.3 實作環境介紹 48 5.2 上位詞測驗 51 5.3 自動人格辨識機制實驗數據 53 5.3.1 精簡詞性為基礎之分類結果 54 5.3.2一般詞性為基礎之人格分類結果 56 5.3.3上位詞為基礎之人格分類結果 57 第六章 結論與未來研究方向 61 6.1 結論 61 6.2 未來研究與方向 62 參考文獻 65

    [1] Agill, A. G., "Taking care of the linguistic features of extraversio," The 24th Annual Conference of the Cognitive Science Society, pp. 363-368, 2002.
    [2] Ainger, A., Kaura, R. & Ennals, R, Executive guide to business successthough human-centered systems,. New York: Springer, 1995.
    [3] Allport, G. W., Pattern and Growth in Personality. New York: Holt, Rinehart &Winston 19., 1961.
    [4] Allport, G. W., Odbert, H. S., and Allport, G. W., "Trait names. A psycho-lexical study," Psychological Monographs, vol. 47, p. 171, 1936.
    [5] Archer-Kath, J., Johnson, D. W., & Johnson, R. T, "Individual versus group feedback in cooperative groups," Journal of Social Psychology, vol. 134, pp. 681-694, 1994.
    [6] Argamon, S., Dhawle, S., Koppel, M., and Pennebaker, J., "Lexical Predictors of Personality Type," Joint Annual Meeting of the Interface and the Classification Society of North Americ, 2005.
    [7] Baron, R. S., Kerr, N. L., and Miller, N., Group Process, Group Decision, Group Action: McGraw-Hill 2003.
    [8] Bouton, C. and Garth, R. Y., "Students in learning groups: Active learning through conversation," New Directions for Teaching and Learning, vol. 1983, pp. 73-82, 1983.
    [9] Cattell, R. B., "The description of personality: Basic traits resolved into clusters," Journal of Abnormal & Social Psychology, vol. 38, pp. 476-506, 1943.
    [10] Chiung-Hui, C. and Hsieh-Fen, H., "Group differences in computer supported collaborative learning: Evidence from patterns of Taiwanese students' online communication," Computers & Education vol. 54, pp. 427-435, 2010.
    [11] Cohen, S. G., & Bailey, D. E., "What Makes Teams Work: Group Effectivess Research from the Shop Floor to the Executive Suite," Journal of Management, vol. 23, pp. 239-290, 1997.
    [12] Fazly, A., Cook, P., and Stevenson, S., "Unsupervised type and token identification of idiomatic expressions," Computational Linguistics, vol. 35, pp. 61-103, 2009.
    [13] Galton, F., "Measurement of character. Fortnightly Review.," vol. 36, 1884.
    [14] Goldberg, L. R., "Language and individual differences: The search for universals in personality lexicons.," In L. Wheeler (Ed.), Review of personality and social psychology, vol. 2, pp. 141-165, 1981.
    [15] Guzzo, R. A., and Shea, G. P., "Group Performance and Intergroup Relations in Organizations," 1992.
    [16] Haque, B., Pawar, K. S., and Barson, R. J., "Analysing organizational issues in concurrent new product development," International Journal of Production Economics, vol. 67, pp. 169-182., 2000.
    [17] Jessup, H. R., "The road to results for teams," Training and Development Journal, vol. 46, pp. 65-68, 1992.
    [18] Johnson, D. W. and Johnson, R. T., "An overview of cooperative learning," in Creativity and Collaborative Learning: A Pratical Guide to Empowering Students and Teachers Virginia: Paul H. Brookes Publishing Co., Inc, 1994, pp. 31-44.
    [19] Katzenbach, J. R. S., D.K, The Wisdom Of Teams:Creating The High-Performance Organization: McKinley & Company, Inc, 1993.
    [20] Lelewer, D. S. H. a. D. A., "Context Modeling for Text Compression," ACM Compurer Surveys, vol. 21, pp. 557-591, 1992.
    [21] Lipnack, J. and Stamps, J., Virtual Teams: Reaching Across Space, Time, and Organizations With Technology 1997.
    [22] Lipnack, J. and Stamps, J., "Virtual teams: The new way to work," Strategy & Leadership, vol. 27, pp. 14-19, 1999.
    [23] Lipponen, L., "Exploring foundations for computer-supported collaborative learning," in Computer Support for Collaborative Learning: Foundations for a CSCL Community, 2002, pp. 72-81.
    [24] Liscombe, J., Venditti, J., and Hirschberg, J., "Classifying subject ratings of emotional speech using acoustic features," in In EUROSPEECH-2003, 2003, pp. 725-728.
    [25] Mairesse, F., Walker, M. A., Mehl, M. R., and Moore, R. K., "Using Linguistic Cues for the Automatic Recognition of Personality in Conversation and Text," Journal of Artificial Intelligence Research, vol. 30, pp. 457-500, 2007.
    [26] Manning, C. D. a. H. S., Foundations of Statistical Natural Language Processing: The MIT Press, 1999.
    [27] Maznevski, M. L. and Chudoba, K. M., "Bridging Space Over Time: Global Virtual Team Dynamics and Effectiveness," Organization Science vol. 11, pp. 473-492, 2000.
    [28] McCrae, R. R. and Costa, P. T., "Updating Norman's "Adequate Taxonomy": Intelligence and Personality Dimensions in Natural Language and in Questionnaires," Journal of Personality and Social Psychology, vol. 49, pp. 710-721, 1985.
    [29] McGrath, J. E., Social Psychology: A Brief Introduction. New York: Holt, Rinehart and Winston, 1964.
    [30] Mctear, M. F., "Spoken Dialogue Technology: Enabling the Conversational User Interface," ACM Computer Surveys, vol. 34, pp. 90-169, March 2002.
    [31] Mehl, M. R., Gosling, S. D., and Pennebaker, J. W., "Personality in Its Natural Habitat: Manifestations and Implicit Folk Theories of Personality in Daily Life," Journal of Personality and Social Psychology, vol. 90, pp. 862-877, 2006.
    [32] Mokhtari, A. and Campbell, N., "Speaking Style Variation and Speaker Personality," in Speech Prosody, 2008, pp. 601-604.
    [33] Newman, M. L., Pennebaker, J. W., Berry, D. S., and Richards, J. M., "Lying words:Predicting deception from linguistic style," Personality and Social Psychology Bulletin, vol. 29, pp. 665–675, 2003.
    [34] Norman, W. T., "Toward an adequate taxonomy of personality attributes: Replicated factor structure in peer nomination personality ratings," Journal of Abnormal & Social Psychology, vol. 66, pp. 574-583, 1963.
    [35] Oberlander, J. and Nowson, S., "Whose thumb is it anyway? classifying author personality from weblog text," in Proceedings of the COLING/ACL on Main conference poster sessions, 2006, pp. 627-634.
    [36] Oudeyer, P. Y., "Novel useful features and algorithms for the recognition of emotions in speech," in The 1st International Conference on Speech Prosody, 2002, pp. 547–550.
    [37] Pennebaker, J. W. and King, L. A., "Linguistic Styles: Language Use as an Individual Difference," Journal of Personality and Social Psychology, vol. 77, pp. 1296-1312, 1999.
    [38] Rienks, R. and Heylen, D., Dominance detection in meetings using easily obtainable vol. 3869: Springer Verlag, 2005.
    [39] Rienks, R. and Heylen, D., "Dominance Detection in Meetings Using Easily Obtainable Features," in In Bourlard, H., & Renals, S. (Eds.), Revised Selected Papers of the 2nd Joint Workshop on Multimodal Interaction and Related Machine Learning Algorithms Springer Verlag, 2005, pp. 76--86.
    [40] Robbins, D. K. and II, J. A. P., "Turnaround: Retrenchment and recovery," Strategic Management Journal, vol. 13, pp. 287-309, 1992.
    [41] Rong, J., Li, G., and Chen, Y.-P. P., "Acoustic feature selection for automatic emotion recognition from speech," Information Processing & Management, vol. 45, pp. 315-328, 2009.
    [42] Roth, W.-M. and Roychoudhury, A., "The Concept Map as a Tool for the Collaborative Construction of Knowledge: A Microanalysis of High School Physics Students," Journal of Research in Science Teaching:, vol. 30, p. 503, 1993.
    [43] Scott, W. G. and Mitchell, T. R., Organization theory: A structural and behavioral analysis. Homewood, IL: Richard Irwin Publisher, 1971.
    [44] Shonk, J. H., Working in Teams: A Practical Manual for Improving Work. New York: Amacom, 1982.
    [45] Slavin, R. E., "Educational Leadership," in Cooperative learning and the cooperative school. vol. 45, 1987, pp. 7-13.
    [46] Slavin, R. E., "Student teams-achievement divisions," in Handbook of Cooperative Learning Methods: Westport: Praeger Publishers, 1999, pp. 3-19.
    [47] Smadja, F., "Retrieving collocations from text: Xtract," Computer Linguistic., vol. 19, pp. 143-177, 1993.
    [48] Springer, L., Stanne, M. E., and Donovan, S., "Effects of Small-Group Learning on Undergraduates in Science, Mathematics, Engineering, and Technology: A Meta-Analysis.," Review of Educational Research, vol. 69, pp. 21-51, 1999.
    [49] Sun, C.-T. and Chou, C., "Experiencing CORAL: design and implementation of distance cooperative learning," IEEE Transactions on Education, vol. 39, pp. 357-366, 1996.
    [50] Sushant, S. A., Argamon, S., Dhawle, S., and Pennebaker, J. W., Lexical Predictors Of Personality Type, 2005.
    [51] Tobin, K., Briscoe, C., and Holman, J. R., "Overcoming constraints to effective elementary science teaching," Science Education, vol. 74, pp. 409-420, 1990.
    [52] Trower, J. K. and Moore, K. K., "A Study of the impact of individual goals and team composition variables on team performance," in ACM SIGCPR, New York, 1996, pp. 206-213.
    [53] Wermter, J. and Hahn, U., "Collocation Extraction Based on Modifiability Statistics," in In Proceedings of the 20th International Conference on Computational Linguistics, 2004.
    [54] Wi, H., Oh, S., Mun, J., and Jung, M., "A team formation model based on knowledge and collaboration," Expert Systems with Applications, vol. 36, pp. 9121-9134, 2009.
    [55] Wysocki, R. K., Beck Jr. R., and Crane D. B., Efective project management. NewYork: John Wiley and Sone, 2000.
    [56] Zakarian, A. a. K., A, "Forming Teams: An Analytical Approach," IIE Transactions on Design and Manufacturing, vol. 31, pp. 85-89, 1999.
    [57] 中央研究院斷詞小組, 2009.
    [58] 王智玄, "國民中小學科技教師運用網路實施問題解決教學能力測驗之發展研究 ", 工業科技教育學系. vol. 碩士: 國立高雄師範大學, 2002.
    [59] 池榮尉, "國民小學教師團隊發展歷程之研究─以啄木鳥教師團隊為例," 教育研究所. vol. 碩士: 中原大學, 2003.
    [60] 易國良, "「網路合作學習」對「問題導向學習」成效的影響-以國中自然科學為例 ", 理學院網路學習碩士在職專班. vol. 碩士: 國立交通大學, 2004.
    [61] 張翠芸 and 柯淑津, "基於統計方法之中文搭配詞自動擷取," in 第十九屆自然語言與語音處理研討會 台北, 2007, pp. 191-203.
    [62] 梁仲豪, "個人習語之萃取與生成於說話風格模型化之研究," 資訊工程學系. vol. 碩士: 國立成功大學, 2007.
    [63] 許智超, "網路合作學習系統之發展與應用,"臺南師範學院. vol. 碩士: 資訊教育研究所, 2002.
    [64] 陳郁儒, "利用網路搜尋搭配詞翻譯,"資訊工程學系. vol. 碩士: 國立清華大學, 2008.
    [65] 陳桂芳, "網路上合作學習的分組方式及任務類型對於電腦學習成效之影響," 資訊管理學系. vol. 碩士: 靜宜大學, 2001.
    [66] 黃堅厚, 人格心理學. 台北: 心理出版社, 1999.
    [67] 劉文田, "互評模式促進學生網路合作學習意願之探討," 資訊管理系所. vol. 碩士: 屏東科技大學 2007.

    下載圖示 校內:2015-06-25公開
    校外:2015-06-25公開
    QR CODE