簡易檢索 / 詳目顯示

研究生: 施秉均
Shih, Ping-Chun
論文名稱: 錫球間距對加強散熱型覆晶球柵陣列組合體之可靠度的影響
Effect of solder-ball pitch on the reliability of a thermally enhanced FC-PBGA assembly
指導教授: 吳俊煌
Wu, Gien-Huang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 87
中文關鍵詞: 覆晶球柵陣列組合體亞蘭德模型Coffin-Manson公式間距疲勞壽命
外文關鍵詞: FC-PBGA assembly, Coffin-Manson, pitch, fatigue life
相關次數: 點閱:118下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於IC封裝技術朝向小尺寸、窄間距以及高密度發展。本文主要探討錫球間距對加強散熱型覆晶球柵陣列組合體之可靠度的影響,當構裝組合體經歷三個熱迴圈負載,溫度區間為-40oC~125oC。散熱強化型覆晶球柵陣列組合體是基本型覆晶球柵陣列封裝體包封著封膠,接著在封膠上面黏附著一片鋁質散熱板,最後以錫球構裝在印刷電路板上。
    由於熱循環負載須需花費大量的時間與資源,將利用有限元素分析商用軟體Ansys進行模擬,本文使用Ansys模擬分析有鉛材料(63Sn37Pb)錫球與無鉛材料(96.5Sn3.5Ag)錫球於熱循環負載條件下。且所有的錫球為非線性黏塑材料,因此以亞蘭德模型來描述錫球的變化行為。
    因此可定義出錫球在溫度循環負載過程中的塑性應變變化(plastic strain range),並根據最大應變找出關鍵破壞錫球。同時,可發現關鍵錫球均位於下層的印刷電路板與上層基板界面接合處,且基板上方附有黏著一片鋁質散熱板的封膠,因接合處上方的封膠有轉折角度而導致應力集中。
    錫球的可靠度可利用一般最常見的Coffin-Manson公式來作預測,接著使用Coffin-Manson公式來預測錫球的疲勞壽命與可靠度。結果顯示,當錫球間距縮小疲勞壽命會增加,而且無鉛材料錫球的可靠度會優於有鉛材料錫球。

    In recent years, due to the IC assembly and packaging technology is developing to small size, fine pitch and high density. In this paper, the effect of solder-ball pitch on the reliability of the thermally enhanced FC-PBGA (Flip-Chip Plastic Ball Grid Array) assembly during Three thermal cycles with ranged -40oC to 125oC were investigated. As a result of the huge cost time and resource for thermal cyclic loading, the finite element analysis commercial software Ansys is used for simulation. then by using Ansys to simulate lead (63Sn37Pb) and lead-free (96.5Sn3.5Ag) solder balls under different pitch during three thermal cyclic loading. in this simulation, all the solder balls were modeled with nonlinear visco-plastic time and temperature dependent material properties based on Anand's model.

    Thus, the relative plastic strain range of the solder ball during thermal cyclic loading can be determined. according to the maximum stress and strain find out the critical solder ball. simultaneously, the critical solder ball occurs at the interface between PCB and Substrate. Solder ball reliability is predicted by the widely accepted Coffin-Manson equation. then by using Coffin-Manson equation to predict the fatigue life and reliability of the solder ball. the results show that the solder ball pitch decrease, fatigue life increase. and the reliability is comparing favorably lead with lead-free solder balls.

    中英文摘要 I 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 符號說明 XII 第一章 緒論 1 1-1 前言 1 1-2 IC封裝技術 2 1-3 覆晶接合技術 3 1-4 研究目的 5 1-5 文獻回顧 5 1-6 本文架構 8 第二章 理論基礎 10 2-1 材料之線性分析理論 10 2-2 材料之非線性分析理論 14 2-2.1直接疊代法(Direct Iteration Method) 15 2-2.2牛頓-瑞佛森法(Newton-Raphson Method) 15 2-2.3修正型牛頓-瑞佛森法(Modified Newton-Raphson Method) 15 2-3 降伏準則(Yield Criterion) 16 2-4 潛變(Creep)理論 19 2-5亞蘭德模型(Anand’s Model) 20 2-6疲勞壽命理論 25 2-6.1 低循環疲勞壽命分析 25 第三章 模型建立與分析 29 3-1有限元素分析( Finite Element Analysis, FEA) 29 3-2 FC-PBGA構裝組合體之基本假設 30 3-2 ANSYS分析步驟 31 3-3一般前處理器(general preprocessor) 32 3-3.1 實體模型建立 34 3-3.2 定義各元件區域體積 43 3-3.3 設定各元件之材料參數 45 3-3.4 選定合適的分析元素 47 3-3.5 網格切割 48 3-4求解(Solving) 52 3-5 後處理(Post-processing) 56 第四章 結果與討論 58 4-1 網格收斂分析 59 4-2 有鉛錫球(63Sn37Pb)分析結果 60 4-2.1錫球應力與應變分析 60 4-2.2關鍵錫球於熱循環負載之變化 65 4-2.3有鉛錫球疲勞壽命預測 66 4-3 無鉛錫球(96.5Sn3.5Ag)分析結果 69 4-3.1錫球應力與應變分析 69 4-3.2關鍵錫球於熱循環負載之變化 74 4-3.3無鉛錫球疲勞壽命預測 75 4-4 有鉛材料與無鉛材料錫球於相同間距下之比較 78 第五章 結論與未來展望 81 5-1 結論 81 5-2 未來展望 82 參考文獻 83

    [1]鍾文仁、陳佑任,“IC封裝製程與CAE應用(第三版) ”,全華科技圖書 股份有限公司,2010年。
    [2]郭昱綸,“覆晶球柵陣列電子構裝體在溫度循環下的熱應力與熱應變分析”, 國立中山大學機械與機電工程系碩士論文,2003。
    [3]A. Schubert, R. Dudek, H. Walter, E. Jung, A. Gollhardt, B. Michel, and H.Reichl, ”Reliability Assessment of Flip-Chip Assemblies with Lead-free Solder Joints”, IEEE ronic Component and Technology Conference, pp.1246-1255, 2002.
    [4]S. Wiese, A. Schubert, H. Walter, R. Dudek, F. Feustel, E. Meusel, and B.Michel, “Constitutive Behaviour of Lead-free Solders vs. Lead-Containing Solders-Experiments on Bulk Specimens and Flip-Chip Joints”, Electronic ponents and Technology Conference, pp.890-902, 2001.
    [5]Cho-pin yeh,“parametric finite element analysis of flip chip reliability” ,the international journal of microcircuits and electronic packaging ,vol.19,pp.120-127,1996.
    [6]Guven, I., Kradinov, V., and Madenci, E., ”Finite Element Modeling of BGA Packages for Life Prediction”, Electronic Components and Technology Conference, 2000, pp. 1059-1063.
    [7]Sven Rzepka and Ekkehard Meusel,“Flip Chip Directly Attached to FR4 Printed Circuit Boards:FEM Simulations and Experimental Tests”,Semiconductor Techonology Center, Inc., pp.8-12, 1995.
    [8]J. Lau and W. Dauksher, “Effects of Ramp-Time on the Thermal-Fatigue Life of SnAgCu Lead-Free Solder Joints”, Electronic Components and Technology Conference, pp.1292-1298, 2005.
    [9]A. Yeo, C. Lee, J. H. L. Pang, “Flip Chip Solder Joint Fatigue Analysis Using 2D and 3D FE Models, ” The 5th Thermal and Mechanical Simulation and Expertments in Micro-electronics and Micro-Systems Conference, pp.549-555, 2004.
    [10]Chen Xiangyang, Zhou Dejian, “Modeling and Reliability Analysis of Lead-Free Solder Joints of Bottom Leaded Plastic (BLP) Package”, High Density Microsystem Design and Packaging and Component Failure Analysis, 2006. HDP'06, 2006, pp.247-253.
    [11]黃靜慈,“高密度封裝之無鉛焊錫的潛變與疲勞強度預估”,中原大學機 械工程學系碩士論文,2007。
    [12]Tee, T. Y., Sivakumar, K., and Do-Bento-Vieira, A. A., ” Board Level Solder Joint Reliability Modeling of LFBGA Package”, IEEE International Symposium on Electronic Materials and Packaging, pp. 51-54, 2000.
    [13]Pao,Y.H., Govila, R., Badgley, S., “An Experimental and Finite Element Study of Thermal Fatigue Fracture of PbSn Solder Joints,”ASME Journal of Electronic Packaging, Vol. 115, pp.1-8,1993
    [14]李國龍,“ 細間距球閘陣列封裝在熱循環負載下之疲勞壽命估算”,中 正嶺學報 第四十二卷 第一期,2013年。
    [15]李國龍,“田口方法對薄形細間距球柵陣列封裝之最佳化設計”,技術學 刊 第二十八卷 第一期,2013年。
    [16]徐仕明,“以有限元素法結合田口氏品質工程研究BGA構裝在功率循環 作用下之可靠度分析”, 國立成功大學工程科學系碩士論文,1999。
    [17]K. Tunga, K. Kacker, R.V. Pucha, S.K. Sitaraman, “Accelerated thermal cycling: is it different for lead-free solder? ” , IEEE Electronic Components and Technology Conference, Vol.2, pp.1579-1585, 2004.
    [18]Q. Yan, L. Rex, R.G. Hamid, S. Polina, K.S. Jan, “Temperature profile effects in accelerated thermal cycling of SnPb and Pb-free solder joints”, Microelectronics Reliability, Vol.46, pp.574-588, 2006.
    [19]H. C. Tsai, W. R. Jong and S. H. Peng, “The Comparisons of IC Packages with/ without Underfill of the Thermo-Mechanical Characteristics”, pp.1444-1448,ANTEC, 2007.
    [20]康淵、 陳信吉 “ANSYS 入門(第六版) ”,全華科技圖書股份有限公司, 2013年。
    [21]李輝煌,“ ANSYS工程分析-基礎與觀念 ”,高立圖書股份有限公司,2009 年。
    [22]陳精一,“ ANSYS電腦輔助工程實務分析 ”,全華科技圖書股份有限公 司,2010年。
    [23] N. E. Dowing, “Mechanical Behavior of Materials”, Prentice-Hall, N.J., 1993.
    [24]E.C. Cutiongco, S. Vaynman, M.E. Fine, and D.A. Jeannotte, “Isothermal Fatigue of 63Sn-37Pb Solder”, Journal of Electronic Packaging, Vol.112, pp.110-114, 1990.
    [25]L. Anand,“Constitutive Equation for The Rate-Dependent Deformation of Metals at Elevated Temperature”, Transactions of The ASME, Vol.104, pp.12-17, 1982.
    [26]Darveaux R. Effect of simulation methodology on solder joint crack growth correlation. In: Proceedings of the 50th Electronic Components and Technology Conference, ECTC. Las Vegas, NE: 2000. p. 1048–58
    [27]F.X. Che, John H.L. Pang,“Thermal Fatigue Reliability Analysis for PBGA with Sn-3.8Ag-0.7Cu Solder Joints,” Electronics Packaging Technology Conf, 2004, pp.787-792.
    [28]Pang, H.L.J., et al, “Design For Reliability (DFR) Methodology For Electronic Packaging Assemblies”, EPTC2003, Singapore, pp. 470-478.
    [29]K.W. Shim, and W.Y. Lo, “Solder Fatigue Modeling of Flip-Chip Bumps in Molded Packages”, IEEE International Electronic Manufacturing Technology, pp. 109-114, 2006.
    [30]G. Wang, Z. Cheng, K. Becker, and J. Wilde, “Applying Anand model to represent the viscoplastic deformation behavior of solder alloys,” ASME Journal of Electronic Packaging, vol. 123, 2001.
    [31]Z. Cheng, G. Wang, L. Chen, J. Wilde, and K. Becker, “Viscoplastic Anand model for solder alloys and its application,” Soldering & Surface Mount Technology, vol. 12, pp. 31–36, 2000.[32]L. Zhang, S. Xue, L. Gao, G. Zeng, Z. Sheng, Y. Chen, S. Yu, “Determination of Anand parameters for SnAgCuCe solder”, Modelling And Simulation In Materials Science And Engineering, Vol.17, 2009.
    [33] JEDEC Solid State Technology Association, Temperature cycling, JESD22-A104-B, 2000.
    [34] 黃清舜,“晶圓級晶片尺寸構裝可靠性分析”,國立雲林科技大學機械 工程系碩士論文,2003年。
    [35]曾穗卿,“利用有限元素與田口方法探討 FCCSP構裝無鉛錫球之最佳化 疲勞壽命”,國立成功大學工程科學系博士論文,2006年。
    [36] L.F. Coffin, Jr., “A Study of the Effects of Cyclic Thermal Stress on a Ductile Metal,” Trans. ASME, Vol. 76, pp. 931-950, 1954.
    [37] S.S. Manson, “Behavior of Materials under Conditions of Thermal Stress,” Heat Transfer Symposium, University of Michigan Engineering Research Institute, pp. 9-57, 1953.
    [38] C. Andersson, “Comparison of isothermal mechanical fatigue properties of  lead-free solder joints and bulk solders” Materials Science and Engineering: A Vol 394, Pages 20–27 ,2005.
    [39]T. Takahashi, S. Hioki, I. Shohji, O. Kamiya, “Fatigue Damage Evaluation by Surface Feature for Sn–3.5Ag and Sn–0.7Cu Solders”, Materials Transactions, Vol. 46, No. 11, pp. 2335-2343, 2005.
    [40]林志光,“電子構裝用無鉛銲錫之低週期疲勞行為研究”,國立中央大學機械工程系碩士論文,2003年。
    [41] H.D. Solomon, “Low-Cycle Fatigue of 60Sn/40Pb Solder”, ASTM Special Technical Publication, Philadelphia, Pa, USA, pp. 342-370, 1985.
    [42] W. Engelmaier, “Fatigue Life of Leadless Chip Carrier Solder Joints During Power Cycling,” IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. CHMT-6, No. 3, pp. 52-57, 1983.
    [43]曾家豪,“微型球柵陣列構裝翹曲及應力分析”,國立雲林科技大學 機械工程系碩士論文,2004年。
    [44] K. Biswas, S. Liu, X. Zhang, T.C. Chai, “Effects of detailed substrate modeling and solder layout design on the 1^st and 2^nd level solder joint reliability for the large die FC-BGA”, IEEE International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, pp. 1-7, 2008.
    [45] H.U. Akay, Y. Liu, M.Tassaian, “Simplification of Finite Element Models for Thermal Fatigue Life Prediction of PBGA Packages”, ASME Journal of Electronic Packaging, Vol.125, pp.347-353, 2003.
    [46] J.H. Lau, S.H. Pan, “Creep Behaviors of Flip Chip on Board With 96.5Sn-3.5Ag and 100In Lead-Free Solder Joints”, Journal of Microcircuits and Electronic Packaging, Vol.24, No.1, pp.11-18, 2001.
    [47] John H. Lau, “Modeling and Analysis of 96.5Sn–3.5Ag Lead-Free Solder Joints of Wafer Level Chip Scale Package on Buildup Microvia Printed Circuit Board” IEEE Transactions on Electronics Packaging Manufacturing, Vol.25,No.1, pp.51-58, 2002.
    [48] M. Pei and J. Qu, “Constitutive Modeling of Lead-Free Solders” , IEEE Advanced Packaging Materials: Processes, Properties and Interfaces, pp.45-49,2005.
    [49] L. Zhang, S. Xue, L. Gao, G. Zeng, Z. Sheng, Y. Chen, S. Yu, “Determination of Anand parameters for SnAgCuCe solder”, Modelling And Simulation In Materials Science And Engineering, Vol.17, 2009.
    [50]Temperature Cycling, “JESD22 A104-D”, JEDEC, 2009.
    [51]林家帆,“覆晶球柵陣列組合體之熱機械行為分析”,國立成功大學機械工程系碩士論文,2013年。

    無法下載圖示 校內:2019-08-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE