| 研究生: |
潘傑森 Jason Parham |
|---|---|
| 論文名稱: |
環境穩定型吸光鈣鈦礦太陽能電池缺陷密度和層厚度設計參數優化 Optimization of an environmentally stable light absorbing Perovskite solar cell: Defect density and thickness variation of layers |
| 指導教授: |
呂宗行
Leu, Jeremy |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程國際碩博士學位學程 International Master/Doctoral Degree Program on Energy Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 36 |
| 中文關鍵詞: | 鈣鈦礦太陽能電池 、實驗設計 、電子傳輸層 、吸收層 、空穴傳輸層 |
| 外文關鍵詞: | Perovskite solar cells, SCAPS-1D, Design of Experiments, Electron transport layer, Absorber layer, Hole transport layer |
| 相關次數: | 點閱:73 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多年來,人們對於鈣鈦礦太陽能電池的興趣持續顯著的增長,隨著對不同材料在使用上的研究不斷深入,鈣鈦礦太陽能電池已顯示出其卓越的吸光性。在目前的調查中,穩定性恰好是很多科學家和研究人員所關注的領域。與硅基太陽能電池不同的地方在於鈣鈦礦太陽能電池 (PSC) 在暴露於環境中時更容易被分解。近期的研究顯示,有種特定的電子傳輸材料—氧化錫 (IV),它與 TiO2 和 ZnO 相比,在暴露於環境時會給予更穩定的性能。選擇穩定的鈣鈦礦太陽能電池,對於優化它讓人感到有趣。有許多材料的參數會影響太陽能電池的電氣參數,例如填充因子、電流密度、開路電壓,最重要的是功率轉換效率。材料參數包括缺陷密度、厚度、層結構、電荷複合等。在這項研究中,評估了缺陷密度和厚度。使用稱為 SCAPS-1D 的模擬軟件對具有電子傳輸層 SnO2、吸收層的 MAPbI3、空穴傳輸層的 Spiro-OMeTAD 結構的 PSC 進行建模。發現1015 cm-3 的缺陷密度可以模擬先前文獻所提供的實驗數據並利用 SAS 提供的 JMP 軟件使用實驗設計 (DOE)的方式完成疊層厚度的優化。隨後使用一次一個因子 (OFAT)的方式以及參考先前的文獻進行更進一步的分析,以研究得出最接近其最佳厚度的疊層。ETL、HTL 和吸收層的所得厚度分別為 8 nm、100 nm 和 627 nm。這些厚度的模擬電氣參數為 0。9519 V 用於開路電壓 (Voc),24。閉路電流密度 (Jsc) 為 17 mA/cm2,71。填充因子 (FF) 為 88%,16。54% 的電源轉換效率 (PCE)。
The interest in Perovskite solar cells has been growing significantly over the years. It has shown great light absorbing properties as the investigation of different material usage grew. In current investigations, the stability happens to be an area of which a lot of scientists and researchers are particular about. Unlike the silicon based solar cells, Perovskite solar cells (PSCs) tend to degrade easily when exposed to the environment. Recent studies have shown that a particular electron transport material, namely tin (IV) oxide (stannic oxide), produced very stable performance when exposed to the environment as opposed to TiO2 and ZnO. By choosing a stable perovskite solar cell, optimization is now of interest. There are many material parameters that affect the electrical parameters of a solar cell such as the fill factor, current density, open circuit voltage and most importantly the power conversion efficiency. The material parameters include defect density, thickness, structure of the layers, charge recombination, etc. In this study, the defect density and thickness were assessed. A simulation software called SCAPS-1D was used to model a PSC with the structure SnO2 for electron transport layer/MAPbI3 for absorber layer/Spiro-OMeTAD for hole transport layer. A defect density of 1015 cm-3 was found to model the experimental data provided by a previous literature. The optimization of the layers’ thicknesses was done using a Design of Experiment (DOE) method using JMP software provided by SAS. This was followed by further analysis using a one-factor-at-a-time (OFAT) method along with previous literatures to investigate each layer near its optimum thickness. The resulting thicknesses were 8 nm, 100 nm, and 627 nm for the ETL, HTL and absorber layer, respectively. The simulated electrical parameters for these thicknesses were 0.9519 V for the open circuit voltage (Voc), 24.17 mA/cm2 for the closed-circuit current density (Jsc), 71.88% for the Fill Factor (FF), and 16.54% for the power conversion efficiency (PCE).
1. Umari, P., E. Mosconi, and F. De Angelis, Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications. Scientific Reports, 2014. 4(1): p. 4467.
2. Kojima, A.T., Kenjiro; Shirai, Yasuo; Miyasaka, Tsutomu, Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-halide Compounds (5). ECS Meeting Abstracts, 2007.
3. Kojima, A., et al., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051.
4. Laboratory, N.R.E. Best Research-Cell Efficiency Chart. 2021; Available from: https://www.nrel.gov/pv/cell-efficiency.html.
5. Jiang, Q., X. Zhang, and J. You, SnO2: A Wonderful Electron Transport Layer for Perovskite Solar Cells. Small, 2018. 14(31): p. 1801154.
6. Montoya De Los Santos, I., et al., Optimization of CH3NH3PbI3 perovskite solar cells: A theoretical and experimental study. Solar Energy, 2020. 199: p. 198-205.
7. Burgelman, M., P. Nollet, and S. Degrave, Modelling polycrystalline semiconductor solar cells. Thin Solid Films, 2000. 361-362: p. 527-532.
8. Institute, S. JMP®Data analysis software for Mac and Windows. 2021, March; Available from: https://www.jmp.com/en_us/software/data-analysis-software.html.
9. Li, F., et al., UV Treatment of Low-Temperature Processed SnO2 Electron Transport Layers for Planar Perovskite Solar Cells. Nanoscale Research Letters, 2018. 13(1): p. 216.
10. Li, C., et al., Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallographica Section B, 2008. 64(6): p. 702-707.
11. Im, J.-H., et al., Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3. Nanoscale Research Letters, 2012. 7(1): p. 353.
12. Koh, T.M., et al., Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells. The Journal of Physical Chemistry C, 2014. 118(30): p. 16458-16462.
13. Im, J.-H., et al., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011. 3(10): p. 4088-4093.
14. Kim, H.-S., et al., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports, 2012. 2(1): p. 591.
15. Ke, W., et al., Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells. Journal of the American Chemical Society, 2015. 137(21): p. 6730-6733.
16. Gan, Y., et al., Numerical Investigation Energy Conversion Performance of Tin-Based Perovskite Solar Cells Using Cell Capacitance Simulator. Energies, 2020. 13(22).
17. Nine, K.B., M.N.H. Shazon, and S.A. Mahmood, Performance evaluation and comparative analysis of a highly efficient FAPbI3-based perovskite solar cell. Journal of the Optical Society of America B, 2020. 37(10): p. 2996-3004.
18. Marc Burgelman, K.D., Alex, Niemegeers, Johan Verschraegen, Stefaan Degrave, SCAPS manual. 2016.
19. Karthick, S., S. Velumani, and J. Bouclé, Experimental and SCAPS simulated formamidinium perovskite solar cells: A comparison of device performance. Solar Energy, 2020. 205: p. 349-357.
20. Azri, F., et al., Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Solar Energy, 2019. 181: p. 372-378.
21. Jamal, M.S., et al., Effect of defect density and energy level mismatch on the performance of perovskite solar cells by numerical simulation. Optik, 2019. 182: p. 1204-1210.
22. Sherkar, T.S., et al., Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions. ACS Energy Letters, 2017. 2(5): p. 1214-1222.
23. Soucase, B.M.P., Inmaculada Guaita; Adhikari, Krishna R. , Numerical Simulations on Perovskite Photovoltaic Devices. Perovskite Materials - Synthesis, Characterisation, Properties, and Applications, 2016.
24. Abdelaziz, S., et al., Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Optical Materials, 2020. 101: p. 109738.
25. Haider, S.Z., H. Anwar, and M. Wang, A comprehensive device modelling of perovskite solar cell with inorganic copper iodide as hole transport material. Semiconductor Science and Technology, 2018. 33(3): p. 035001.
26. Dong, Q., et al., Solar cells. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015. 347(6225): p. 967-70.
27. Adhyaksa, G.W.P., et al., Understanding Detrimental and Beneficial Grain Boundary Effects in Halide Perovskites. Advanced Materials, 2018. 30(52): p. 1804792.
28. Jeong, S., et al., Atomic layer deposition of a SnO2 electron-transporting layer for planar perovskite solar cells with a power conversion efficiency of 18.3%. Chemical Communications, 2019. 55(17): p. 2433-2436.
29. Jeyakumar, R., et al., Influence of Electron Transport Layer (TiO2) Thickness and Its Doping Density on the Performance of CH3NH3PbI3-Based Planar Perovskite Solar Cells. Journal of Electronic Materials, 2020. 49(6): p. 3533-3539.
30. Chen, Z., et al., Bulk heterojunction perovskite solar cells based on room temperature deposited hole-blocking layer: Suppressed hysteresis and flexible photovoltaic application. Journal of Power Sources, 2017. 351: p. 123-129.
31. Agarwal, S. and P.R. Nair, Pinhole induced efficiency variation in perovskite solar cells. Journal of Applied Physics, 2017. 122(16): p. 163104.
32. S, A., N. Abraham, and V. Suresh Babu, Optimization of layer thickness of ZnO based perovskite solar cells using SCAPS 1D. Materials Today: Proceedings, 2021. 43: p. 3432-3437.
33. Hariadi, M., et al., Fabrication of low cost perovskite solar cell under ambient conditions using only spin coating deposition method. E3S Web Conf., 2018. 67.