| 研究生: |
溫從凱 Wen, Tsung-Kai |
|---|---|
| 論文名稱: |
利用G/L方法探討WLCSP構裝含UBM錫球之疲勞壽命 Investigation of the Fatigue Life of Solders with Under Bump Metallurgy for Wafer Level Chip Scale Package by G/L Method |
| 指導教授: |
陳榮盛
Chen, Rong-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 晶圓級封裝 、疲勞壽命 、全域/局部方法 、多層金屬薄膜 |
| 外文關鍵詞: | WLCSP, Fatigue Life, Global/Local Method, UBM |
| 相關次數: | 點閱:102 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
直接以晶片進行構裝之晶圓級封裝形式(Wafer Level Chip Scale Package, WLCSP),由於其尺寸較小可提高產品之聚集度,不需使用機械鋼嘴打線或加壓加熱,可在晶圓廠中直接進行,已逐漸成為未來發展的趨勢。其中連結錫球與晶片二者間之多層金屬薄膜(Under Bump Metallurgy簡稱UBM),對產品的好壞具有決定性之影響力。
本文採用96.5Sn3.5Ag無鉛錫球含UBM材料之WLCSP構裝體,先利用Surface Evolver預測錫球迴焊後之形狀,再利用ANSYS 7.0有限元素分析軟體建立三維模型,並將介於錫球與晶片間之多層金屬薄膜材料考慮於模型中。其間塑性部分採用多線性等向硬化( Multilinear isotropic hardening ) 及潛變部分採用葛拉佛拉-阿瑞尼阿斯潛變模式(Garofalo-Arrhenius creep model) 進行分析,在分析時引入全域/局部有限元素分析方法,以有效改善網格分割造成結果準確性及收斂性的問題。接著採用單一因子實驗方法來評估個別因子對錫球疲勞壽命的影響。
透過本文之完成,希望能提供業界對無鉛錫球及UBM材料之應用更深一層的了解,進而提升產品的競爭力。
The Wafer Level Chip Scale Package (WLCSP) is a packaging technology starting from the wafer directly, may enhance compactness of the product due to its smaller size. It doesn’t need wire bonding or pressurizing/heating, and may proceed directly in the wafer factory, hence, is becoming a trend in the future gradually. Moreover, the multi-layered Under Bump Metallurgy (UBM) between the solder ball and the silicon chip has decisive impact on the quality of products.
This paper adopted 96.5Sn3.5Ag lead-free solder ball containing UBM in a WLCSP. First, Surface Evolver was used to predict the shape of solder balls after reflow, then the finite element analysis software, ANSYS 7.0, is applied to set up a three-dimensional model based on the consideration of the multi-layered Under Bump Metallurgy (UBM). Multilinear isotropic hardening and Garofalo-Arrhenius creep model were used in the plastic and creep analysis respectively. The global/local finite element method was introduced to improve accuracy and convergence in meshing. Finally, the single factor experiment was adopted to predict the impact on the fatigue life of solder balls by each factor.
Hoping the completion of this paper may offer helpful suggestions to manufacturers on the application of lead-free solder ball and UBM to improve the competitive edge of the products.
﹝1﹞B. A. Zahn,“Comprehensive Solder Fatigue and Thermal Characterization of a Silicon Based Multi-Chip Module Package Utilizing Finite Element Analysis Methodologies”,IEEE Electronic Components and Technology Conference,2001.
﹝2﹞S. J. Cho, J. Y. Kim,“Under Bump Metallurgies for a Wafer Level CSP with Eutectic Pb-Sn Solder Ball,” IEEE Electronic Components and Technology Conference, pp.844-849, 2000
﹝3﹞S. Wiese, “Constitutive Behaviour of Lead-free Solders vs. Lead-containing Solders -Experiments on Bulk Specimens and Flip-Chip Joints”,Electronic Components and Technology Conference, 2001.
﹝4﹞S. Y. Jang, J. Wolf, O. Ehrmann, H. Reichl, K. W. Paik, “Investigation of UBM System for Electroplated Sn/37Pb and Sn/3.5Ag Solder”, Electronic Components and Technology Conference, 2001.
﹝5﹞J. H. Lau,“Effects of Microvia Build-Up Layers on the Solder Joint Reliability of a Wafer Level Chip Scale Package (WLCSP)”,IEEE Electronic Components and Technology Conference,2001.
﹝6﹞D. H. Kim, P. Elenius, S. Barrett , “Solder Joint Reliability and Characteristics of Deformation and Crack Growth of Sn–Ag–Cu Versus Eutectic Sn–Pb on a WLP in a Thermal Cycling Test”, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 25, No. 2, April 2002.
﹝7﹞J. H. Lau, “Modeling and Analysis of 96.5Sn-3.5Ag Lead-Free Solder Joints of Wafer Level Chip Scale package on Buildup Microvia Printed Circuit Board”, IEEE Transaction on Electronics Packaging Manufacturing, Vol. 25, No.1,pp.51~58, January 2002.
﹝8﹞劉振中,“無鉛錫球含多層金屬薄膜之晶圓級封裝結構應力分析”, 成功大學工程科學系碩士畢業論文, 2003.
﹝9﹞梁金條,“無鉛錫球含多層金屬薄膜之晶圓級封裝結構應力分析”, 成功大學工程科學系碩士畢業論文, 2005
﹝10﹞H. C. Cheng, C. Y. Yu, W. H. Chen,“An EffectiveThermal-mechanical Modeling Methodology for Large-scale Area Array Typed Package ”, Electronic Components and Technology Conference, 2005.
﹝11﹞T. H. Leng, G. Kirkpatrick,“Cr/Cu/Ni Underbump Metallization Study”, Electronic Components and Technology Conference, pp.939~944, 2001.
﹝12﹞J. H. Lau, “Solder Joint Crack Propagation Analysis of Wafer-Level Chip Scale Package on Printed Circuit Board Assemblies”, Electronic Components and Technology Conference , 2000.
﹝13﹞Beer, F. P. and Johnston, E. R., Mechanics of Materials, McGraw-Hill, New York, 2002.
﹝14﹞Chen, W. F. and Han, D. J., Plasticity for Structural Engineers, GauLih, Taipei, 1995.
﹝15﹞K. N. Chiang, K. C. Chang, “Study Effects of Cu Stud Design of IMC Growth on the Reliability of Micro-Electronic Devices ”,2004
﹝16﹞S. Brakke, “Polymer Collar WLP – A New Wafer Level Package for Improved Solder Joint Reliability ” ,2001
﹝17﹞K. A. Brakke, “Surface Evolver Manual. ” Minneapolis, MN: The GeometryCenter, 1994.
﹝18﹞ANSYS Menu, “Structural Analysis User's Guide”.
﹝19﹞徐秉業, 劉信聲, “應用彈塑性力學”, 凡異出版社, 1997.
﹝20﹞李輝煌, “田口方法品質設計的原理與實務”,高立圖書有限公司,2000.
﹝21﹞J. H. Lau, “Solder Joint Crack Propagation Analysis of Wafer-Level Chip Scale Package on Printed Circuit Board Assemblies”, Electronic Components and Technology Conference , 2000.
﹝22﹞Y. Li, R. L. Mahajan, and G. Subbarayan, “The Effect of Stencil Printing Optimization on Reliability of CBGA and Pbga Solder Joints”, ASME Journal of ElectronicPackaging, Vol. 120, 1998, pp 54-60.
﹝23﹞J. H. Lau, B. S. Xiong and F. X. Che, “Modeling Stress Strain Curves For Lead-Free 95.5Sn-3.8Ag-0.7Cu Solder”, 5th. Int. Conf. on Thermal and Mechanical Simulation and Experiments in Micro-electronics and Micro-systems, EuroSimE2004.
﹝24﹞X. Chen, G. Chen. and M. Sakane, “Modified Anand Constitutive Model For Lead-Free Solder Sn-3.5Ag”, IEEE Electronic Components and Technology Conference,2004.