| 研究生: |
蔡佶宏 Tsai, Chi-Hong |
|---|---|
| 論文名稱: |
雷射加工與複合薄膜摩擦奈米發電機的發電特性與壓力感測器之研究 A study on laser processing and composite film triboelectric nanogenerator characteristics and pressure sensor |
| 指導教授: |
鍾震桂
Chung, Chen-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 摩擦發電機 、翻模技術 、二氧化碳雷射 、壓力感測器 |
| 外文關鍵詞: | Triboelectric nanogenerator, Polymer casting, CO2 laser, Pressure sensor |
| 相關次數: | 點閱:44 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著工業4.0與半導體科技發展使得科技進步迅速,且全世界人口持續增長,能源需求日益漸增且傳統能源有限,因此興起對綠色能源的發展,其中機械能獵能器具有可將環境中浪費的機械能收集轉換為電能特性,而摩擦發電機為機械能獵能器的一種,且能實現將機械能轉換為電能的效果,並應用於各種自供電設備。本文使用CO2雷射加工並結合高分子材料PDMS翻模技術及摻雜導電的碳材料,製作出微針狀結構及具有雷射紋理粗糙表面形貌。實驗發現微針狀結構及摻雜導電的碳材料摩擦層皆能夠提升摩擦發電輸出性能,因此本文將針對兩種摩擦層影響輸出電性能進行探討,並設計雷射加工參數,結合摩擦發電機以增強電性能輸出與應用搭配。
本文提出的微針狀結構摩擦發電機及摻雜導電的碳材料摩擦發電機分別具有開路電壓158.4/126.1 V、短路電流91.2/81.7 μA和最大瞬時功率8.28/5.24 mW,且分別為單次加工微針狀結構摩擦發電機與無摻雜摩擦發電機開路電壓的2.59/2.51倍、短路電流的2.57/2.19倍。將其應用於持久度、電容充放電與發光二極體驅動實驗,證明此結構穩定度,並分別於16/25秒內將0.47-10 μF的電容充電電壓至3.18 /2.08 V以上,亦分別驅動504/398個綠色LED,證明其可應用於自供電裝置與電子廣告看板等。接著將其對濕度的影響進行實驗,於相對濕度40%時會有最佳的輸出性能,當相對濕度值達到80%時,輸出性能分別僅剩下40%的0.12/0.14倍,由於相對濕度提升使表面產生水薄膜導致輸出性能下降。
將具有最高結構的雷射加工微針狀摩擦層進行壓力靈敏度感測,於0.5 - 4 kPa間靈敏度為14.1 V/kPa。並將其應用於自製垂直接觸分離式摩擦發電機發展為壓力感測器,結合Arduino UNO控制板作為人體運動感測系統,應用於手部復健輔助,未來能配合醫學相關需求與發展趨勢,實際應用於人體智慧監測與輔助器。
In this paper, we utilize CO2 laser processing, polymer casting technology, and the incorporation of conductive carbon materials (graphite) to fabricate microneedle structures and rough surface textures structure triboelectric layer of TENG.
This article proposed the microneedle structure TENG and the graphite-doped TENG which have open-circuit voltages of 158.4/126.1 V, short-circuit currents of 91.2/81.7 μA, and maximum instantaneous powers of 8.28/5.24 mW, respectively. which has 2.59/2.51 times and 2.57/2.19 times higher than those of a single-pass microneedle structure TENG and a pure TENG (without graphite doping), respectively.
The microneedle structure PDMS-TENG and graphite-doped PDMS-TENG can charge capacitors ranging from 0.47 to 10 μF to voltages above 3.18/2.08 V in 16/25 seconds, respectively, and they can drive 504/398 green-colored LEDs, showcasing their potential for applications in self-powered devices and electronic advertising billboards.
Moreover, we conduct humidity experiments and found that these TENGs exhibit the highest output performance at a relative humidity of 40%. However, when the relative humidity reaches 80%, the output performance of microneedle structure PDMS-TENG and graphite-doped PDMS-TENG will decrease about 0.12 times and 0.14 times if compared to the relative humidity of 40%.
Furthermore, the pressure sensitivity measurements of the microneedle structure of microneedle structure triboelectric layer were analyzed in this study. The highest height of microneedle structure has the highest mechanical sensitivity of 14.1 V/kPa in the low-pressure region (0.5-4 kPa). Then we apply the multi-pass microneedle structure triboelectric layer of TENG to develop a pressure sensor. The system is integrated with an Arduino UNO control board to create a human motion monitoring system for hand rehabilitation assistance. This application could be developed in the medical care industry and used for practical applications in human-machine interface (HMI).
[1] https://www.taipower.com.tw/tc/page.aspx?mid=6589
[2] https://www.taipower.com.tw/tc/page.aspx?mid=6589&cid=4113&cchk=92e1346c-fd59-474f-b095-091fd0f7e2bc
[3] G. F. Smaisim, A. M. Abed & H. Alavi, “Analysis of pollutant emission reduction in a coal power plant using renewable energy.” International Journal of Low-Carbon Technologies, vol. 18, 38-48, 2023.
[4] H. S. Jeong, J. H. Kim & S. H. Yoo, “South Korean Public Acceptance of the Fuel Transition from Coal to Natural Gas in Power Generation.” Sustainability, vol. 13(19), 10787, 2021.
[5] S. Sadekin, S. Zaman, M. Mahfuz & R. Sarkar, “Nuclear power as foundation of a clean energy future: A review.” Energy Procedia, vol. 160, 513-518, 2019.
[6] S. Eslami, A. Gholami, A. Bakhtiari, M. Zandi & Y. Noorollahi, “Experimental investigation of a multi-generation energy system for a nearly zero-energy park: A solution toward sustainable future.” Energy Conversion and Management, vol. 200, 112107, 2019.
[7] A. M. Foley, N. McIlwaine, D. J. Morrow, B. P. Hayes, M. A. Zehir, L. Mehigan, B. Papari, C. S. Edrington & M. Baran, “A critical evaluation of grid stability and codes, energy storage and smart loads in power systems with wind generation.” Energy, vol. 205, 117671, 2020.
[8] N. Yildirim, S. Parmanto & G. G. Akkurt, “Thermodynamic assessment of downhole heat exchangers for geothermal power generation.” Renewable Energy, vol. 141, 1080-1091, 2019.
[9] R. Alrefai, A. M. Alrefai, K. Y. Benyounis & J. Stokes, “An Evaluation of the Effects of the Potato Starch on the Biogas Produced from the Anaerobic Digestion of Potato Wastes.” Energies, vol. 13(9), 2399, 2020.
[10] P. A. Østergaard, N. Duic, Y. Noorollahi & S. Kalogirou, “Latest progress in Sustainable Development using renewable energy technology.” Renewable Energy, vol. 162, 1554-1562, 2020.
[11] I. Gunnarsdóttir, B. Davidsdottir, E. Worrell & S. Sigurgeirsdóttir, “Sustainable energy development: History of the concept and emerging themes.” Renewable and Sustainable Energy Reviews, vol. 141, 110770, 2021.
[12] J. H. Lee, J. Kim, T. Y. Kim, M. S. Al Hossain, S. W. Kim & J. H. Kim, “All-in-one energy harvesting and storage devices.” Journal of Materials Chemistry A, vol. 4(21), 7983-7999, 2016.
[13] A. R. M. Siddique, S. Mahmud & B. Van Heyst, “A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms.” Energy Conversion and Management, vol. 106, 728-747, 2015.
[14] X. S. Zhang, M. D. Han, B. Meng & H. X. Zhang, “High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies.” Nano Energy, vol. 11, 304-322, 2015.
[15] D. N. Venu, A. Arun Kumar & K. K. Vaigandla, “Review of Internet of Things (IoT) for Future Generation Wireless Communications.” International Journal for Modern Trends in Science and Technology, vol. 8(03), 01-08, 2022.
[16] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, & M. Gidlund, “Industrial internet of things: Challenges, opportunities, and directions.” IEEE Transactions on Industrial Informatics, vol. 14(11), pp. 4724-4734, 2018.
[17] A. Gaddam, T. Wilkin, M. Angelova & J. Gaddam, “Detecting sensor faults, anomalies and outliers in the internet of things: A survey on the challenges and solutions.” Electronics, vol. 9(3), 511, 2020.
[18] Z. L. Wang, “Triboelectric nanogenerator (TENG)—Sparking an energy and sensor revolution.” Advanced Energy Materials, vol. 10(17), 2000137, 2020.
[19] H. Yang, F. R. Fan, Y. Xi & W. Wu, “Design and engineering of high-performance triboelectric nanogenerator for ubiquitous unattended devices.” EcoMat, vol. 3(2), e12093, 2021.
[20] A. Matin Nazar, K. J. Idala Egbe, A. Abdollahi & M. A. Hariri-Ardebili, “Triboelectric nanogenerators for energy harvesting in ocean: A review on application and hybridization.” Energies, vol. 14(18), 5600, 2021.
[21] J. Wang, Z. Zhao, X. Zeng, X. Liu & Y. Hu, “A Tubular Flexible Triboelectric Nanogenerator with a Superhydrophobic Surface for Human Motion Detecting.” Sensors, vol. 21(11), 3634, 2021.
[22] T. Guo, J. Zhao, W. Liu, G. Liu, Y. Pang, T. Bu, F. Xi, C. Zhang & X. Li, “Self-powered hall vehicle sensors based on triboelectric nanogenerators.” Advanced Materials Technologies, vol. 3(8), 1800140, 2018.
[23] J. Kim, O. Gulahmadov & M. B. Muradov, “Enhancement of performance of triboelectric generators by introduction of micro-and nano-structures on triboelectric films.” Journal of Materials Science: Materials in Electronics, vol. 32(20), 24661-24680, 2021.
[24] Y. S. Choi, S. W. Kim & S. Kar-Narayan, “Materials-related strategies for highly efficient triboelectric energy generators.” Advanced Energy Materials, vol. 11(7), 2003802, 2021.
[25] C. Wu, A. C. Wang, W. Ding, H. Guo, & Z. L. Wang, "Triboelectric nanogenerator: a foundation of the energy for the new era, " Advanced Energy Materials, vol. 9(1), pp. 1802906, 2019.
[26] F. R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang & Z. L. Wang, “Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films.” Nano letters, vol. 12(6), 3109-3114, 2012.
[27] Y. Hu, X. Wang, Y. Qin, Z. Li, C. Wang & H. Wu, “A robust hybrid generator for harvesting vehicle suspension vibration energy from random road excitation.” Applied Energy, vol. 309, 118506, 2022.
[28] G. Suo, Y. Yu, Z. Zhang, S. Wang, P. Zhao, J. Li and X. Wang, “Piezoelectric and triboelectric dual effects in mechanical-energy harvesting using BaTiO3/polydimethylsiloxane composite film.” ACS applied materials & interfaces, vol. 8, pp. 34335-34341, 2016.
[29] Y. J. Fan, X. S. Meng, H. Y. Li, S. Y. Kuang, L. Zhang, Y. Wu, Z. L. Wang and G. Zhu, “Stretchable Porous Carbon Nanotube‐Elastomer Hybrid Nanocomposite for Harvesting Mechanical Energy.” Advanced Materials, vol. 29, pp. 1603115, 2017.
[30] V. Harnchana, H. V. Ngoc, W. He, A. Rasheed, H. Park, V. Amornkitbamrung and D. J. Kang, “Enhanced power output of a triboelectric nanogenerator using poly (dimethylsiloxane) modified with graphene oxide and sodium dodecyl sulfate.” ACS applied materials & interfaces, vol. 10, pp. 25263-25272, 2018.
[31] S. Wang, L. Lin & Z. L. Wang, “Triboelectric nanogenerators as self-powered active sensors.” Nano Energy, vol. 11, 436-462, 2015.
[32] K. Venugopal, P. Panchatcharam, A. Chandrasekhar & V. Shanmugasundaram, “Comprehensive review on triboelectric nanogenerator based wrist pulse measurement: Sensor fabrication and diagnosis of arterial pressure.” ACS sensors, vol. 6(5), 1681-1694, 2021.
[33] H. Zhang, Y. Yang, Y. Su, J. Chen, K. Adams, S. Lee, C. Hu & Z. L. Wang, “Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor.” Advanced Functional Materials, vol. 24(10), 1401-1407, 2014.
[34] S. Wang, S. Niu, J. Yang, L. Lin & Z. L. Wang, “Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator.” ACS nano, vol. 8(12), 12004-12013, 2014.
[35] G. Khandelwal & R. Dahiya, “Self‐powered active sensing based on triboelectric generators.” Advanced Materials, vol. 34(33), 2200724, 2022.
[36] Z. L. Wang, “On Maxwell's displacement current for energy and sensors: The origin of nanogenerators.” Materials Today, vol. 20(2), 74-82, 2017.
[37] J. V. Vidal, V. Slabov, A. L. Kholkin & M. P. S. Dos Santos, “Hybrid triboelectric-electromagnetic nanogenerators for mechanical energy harvesting: A review.” Nano-Micro Letters, vol. 13, 1-58, 2021.
[38] A. Khaligh, P. Zeng & C. Zheng, “Kinetic energy harvesting using piezoelectric and electromagnetic technologies—state of the art.” IEEE transactions on industrial electronics, vol. 57(3), 850-860, 2009.
[39] Z. L. Wang & J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays.” Science, vol. 312(5771), 242-246, 2006.
[40] Y. Liu, L.Wang, L. Zhao, X. Yu & Y. Zi, “Recent progress on flexible nanogenerators toward self‐powered systems.” InfoMat, vol. 2(2), 318-340, 2020.
[41] F. R. Fan, Z. Q. Tian, & Z. L. Wang, "Flexible triboelectric generator," Nano energy, vol. 1, PP. 328-334, 2012.
[42] N. Wang, Y. Liu, E. Ye, Z. Li & D. Wang, “Innovative Technology for Self‐Powered Sensors: Triboelectric Nanogenerators.” Advanced Sensor Research, vol. 2(5), 2200058, 2023.
[43] R. D. I. G. Dharmasena, K. D. G. I. Jayawardena, C. A. Mills, J. H. B. Deane, J. V. Anguita, R. A. Dorey, & S. R. P. Silva, “Triboelectric nanogenerators: providing a fundamental framework.” Energy & Environmental science, vol. 10(8), PP. 1801-1811, 2017.
[44] Z. L. Wang, "Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors," ACS Nano, vol. 7, PP. 9533-9557, 2013.
[45] H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, & Z. L. Wang, "Quantifying the triboelectric series," Nature communications, vol. 10(1), PP. 1-9, 2019.
[46] J. W. Lee, B. U. Ye & J. M. Baik, “Research Update: Recent progress in the development of effective dielectrics for high-output triboelectric nanogenerator.” APL Materials, vol. 5(7), 2017.
[47] A. Kaur, A. Gupta, C. Ying, M. Rahmani & G. Sapra, “Wearable Human Motion Monitoring Using Vertical Contact Separation Mode Triboelectric Nanogenerator.” In IOP Conference Series: Materials Science and Engineering, vol. 1225, No. 1, p. 012031, 2022.
[48] S. Niu, S. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. Hu & Z. L. Wang, “Theoretical study of contact-mode triboelectric nanogenerators as an effective power source.” Energy & Environmental Science, vol. 6(12), 3576-3583, 2013.
[49] F. Rahimi Sardo, A. Rayegani, A. Matin Nazar, M. Balaghiinaloo, M. Saberian, S. A. H. Mohsan & H. S. Cho, “Recent Progress of Triboelectric Nanogenerators for Biomedical Sensors: From Design to Application.” Biosensors, vol. 12(9), 697, 2022.
[50] S. Dai, X. Li, C. Jiang, J. Ping & Y. Ying, “Triboelectric nanogenerators for smart agriculture.” InfoMat, vol. 5(2), e12391, 2023.
[51] A. K. Chaturvedi, S. Badatya, A. Pappu, A. K. Srivastava & M. K. Gupta, “Sustainable robust waste-recycled ocean water-resistant fly ash-carbon nanotube nanocomposite-based triboelectric nanogenerator.” Sustainable Energy & Fuels, vol. 7(7), 1735-1746, 2023.
[52] F. Peng, D. Liu, W. Zhao, G. Zheng, Y. Ji, K. Dai & C. Shen, “Facile fabrication of triboelectric nanogenerator based on low-cost thermoplastic polymeric fabrics for large-area energy harvesting and self-powered sensing.” Nano Energy, vol. 65, 104068, 2019.
[53] I. Kim, & D. Kim, “Switchless oscillating charge pump-based triboelectric nanogenerator and an additional electromagnetic generator for harvesting vertical vibration energy.” ACS applied materials & interfaces, vol. 14(29), 34081-34092, 2022.
[54] Z. Zhao, B. Wei, Y. Wang, X. Huang, B. Li, F. Lin & X. Pan, “An array of flag-type triboelectric nanogenerators for harvesting wind energy.” Nanomaterials, vol. 12(4), 721, 2022.
[55] P. Bai, G. Zhu, Y. Liu, J. Chen, Q. Jing, W. Yang, & Z. L. Wang, “Cylindrical rotating triboelectric nanogenerator.” ACS nano, vol. 7(7), 6361-6366, 2013.
[56] Y. Pang, X. Zhu, C. Lee & S. Liu, “Triboelectric nanogenerator as next-generation self-powered sensor for cooperative vehicle-infrastructure system.” Nano Energy, vol. 97, 107219, 2022.
[57] J. Li, Y. Long, F. Yang, & X. Wang, “Respiration‐driven triboelectric nanogenerators for biomedical applications.” EcoMat, vol. 2(3), e12045, 2020.
[58] Z. L. Wang, L. Lin, J. Chen, S. Niu, Y. Zi & Y. Zi, “Triboelectric nanogenerator: lateral sliding mode.” Triboelectric nanogenerators, 49-90, 2016.
[59] J. C. Fan, X. G. Tang, Q. J. Sun, Y. P. Jiang, W. H. Li, & Q. X. Liu, “Low-cost composite film triboelectric nanogenerators for a self-powered touch sensor.” Nanoscale, vol. 15(13), 6263-6272, 2023.
[60] Z. Zheng, D. Yu, B. Wang & Y. Guo, “Ultrahigh sensitive, eco-friendly, transparent triboelectric nanogenerator for monitoring human motion and vehicle movement.” Chemical Engineering Journal, vol. 446, 137393, 2022.
[61] F. Rahimi Sardo, A. Rayegani, A. Matin Nazar, M. Balaghiinaloo, M. Saberian, S. A. H. Mohsan & H. S. Cho, “Recent Progress of Triboelectric Nanogenerators for Biomedical Sensors: From Design to Application.” Biosensors, vol. 12(9), 697, 2022.
[62] J. Wu, Y. Zheng & X. Li, “Recent progress in self-powered sensors based on triboelectric nanogenerators.” Sensors, vol. 21(21), 7129, 2021.
[63] C. Rodrigues, D. Nunes, D. Clemente, N. Mathias, J. M. Correia, P. Rosa-Santos & J. Ventura, “Emerging triboelectric nanogenerators for ocean wave energy harvesting: state of the art and future perspectives.” Energy & Environmental Science, vol. 13(9), 2657-2683, 2020.
[64] Z. Li, S. Zhang, H. Guo, B. Wang, Y. Gong, S. Zhong, & X. Xiao, “On the performance of freestanding rolling mode triboelectric nanogenerators from rotational excitations for smart tires.” Nano Energy, vol. 108595, 2023.
[65] S. Wang, Y. Xie, S. Niu, l. Lin and Z. L. Wang, “Freestanding triboelectric‐layer‐based nanogenerators for harvesting energy from a moving object or human motion in contact and non‐contact modes,” Advanced materials, vol. 26, pp. 2818-2824, 2014.
[66] C. Wu, A. C. Wang, W. Ding, H. Guo, & Z. L. Wang, “Triboelectric nanogenerator: a foundation of the energy for the new era.” Advanced Energy Materials, vol. 9(1), 1802906, 2019.
[67] F. R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, & Z. L. Wang, “Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films.” Nano letters, vol. 12(6), 3109-3114, 2012.
[68] J. Song, L. Gao, X. Tao, & L. Li, “Ultra-Flexible and large-area textile-based triboelectric nanogenerators with a sandpaper-induced surface microstructure.” Materials, vol. 11(11), 2120, 2018.
[69] C. K. Jeong, K. M. Baek, S. Niu, T. W. Nam, Y. H. Hur, D. Y. Park, G. T. Hwang, M. Byun, & K. J. Lee, “Topographically-designed triboelectric nanogenerator via block copolymer self-assembly.” Nano letters, vol. 14(12), 7031-7038, 2014.
[70] G. G. Cheng, S. Y. Jiang, K. Li, Z. Q. Zhang, Y. Wang, N. Y. Yuan & W. Zhang, “Effect of argon plasma treatment on the output performance of triboelectric nanogenerator.” Applied Surface Science, vol. 412, 350-356, 2017.
[71] Z. Zhou, X. Li, Y. Wu, H. Zhang, Z. Lin, K. Meng & Z. L. Wang,” Wireless self-powered sensor networks driven by triboelectric nanogenerator for in-situ real time survey of environmental monitoring.” Nano Energy, vol. 53, 501-507, 2018.
[72] I. W. Tcho, W. G. Kim, S. B. Jeon, S. J. Park, B. J. Lee, H. K. Bae, D. Kim & Y. K. Choi, “Surface structural analysis of a friction layer for a triboelectric nanogenerator.” Nano energy, vol. 42, 34-42, 2017.
[73] V. L. Trinh, & C. K. Chung, “A Facile Method and Novel Mechanism Using Microneedle-Structured PDMS for Triboelectric Generator Applications.” small, vol. 13(29), 1700373, 2017.
[74] H. Qiao, Y. Zhang, Z. Huang, Y. Wang, D. Li & H. Zhou, “3D printing individualized triboelectric nanogenerator with macro-pattern.” Nano Energy, vol. 50, 126-132, 2018.
[75] G. Zhu, Z. H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang & Z. L. Wang, “Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator.” Nano letters, vol. 13(2), 847-853, 2013.
[76] Y. H. Ko, G. Nagaraju, S. H. Lee & J. S. Yu, “PDMS-based triboelectric and transparent nanogenerators with ZnO nanorod arrays.” ACS applied materials & interfaces, vol. 6(9), 6631-6637, 2014.
[77] M. Mariello, E. Scarpa, L. Algieri, F. Guido, V. M. Mastronardi, A. Qualtieri & M. De Vittorio, “Novel flexible triboelectric nanogenerator based on metallized porous PDMS and parylene C.” Energies, vol. 13(7), 1625, 2020.
[78] W. Seung, M. K. Gupta, K. Y. Lee, K. S. Shin, J. H. Lee, T. Y. Kim, S.Kim, J. Lin, J.H. Kim & S. W. Kim, “Nanopatterned textile-based wearable triboelectric nanogenerator.” ACS Nano, vol. 9, 3501-3509, 2015.
[79] V. L. Trinh & C. K. Chung, “Harvesting mechanical energy, storage, and lighting using a novel PDMS based triboelectric generator with inclined wall arrays and micro-topping structure.” Applied Energy, vol. 213, 353-365, 2018.
[80] W. C. Lin, S. H. Lee, M. Karakachian, B. Y. Yu, Y. Y. Chen, Y. C. Lin & J. J. Shyue, “Tuning the surface potential of gold substrates arbitrarily with self-assembled monolayers with mixed functional groups.” Physical Chemistry Chemical Physics, vol. 11(29), 6199-6204, 2009.
[81] S. H. Shin, Y. E. Bae, H. K. Moon, J. Kim, S. H. Choi, Y. Kim & J. Nah, “Formation of triboelectric series via atomic-level surface functionalization for triboelectric energy harvesting.” ACS nano, vol. 11(6), 6131-6138, 2017.
[82] Y. Feng, L. Zhang, Y. Zheng, D. Wang, F. Zhou & W. Liu, “Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting.” Nano Energy, vol. 55, 260-268, 2019.
[83] J. Chen, H. Guo, X. He, G. Liu, Y. Xi, H. Shi, & C. Hu, “Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film.” ACS applied materials & interfaces, vol. 8(1), 736-744, 2016.
[84] A. K. Chaturvedi, S. Badatya, A. Pappu, A. K. Srivastava & M. K. Gupta, “Sustainable robust waste-recycled ocean water-resistant fly ash-carbon nanotube nanocomposite-based triboelectric nanogenerator.” Energy & Fuels, vol. 7(7), 1735-1746, 2023.
[85] K. H. Ke, L. Lin, , & C. K. Chung, “Low-cost micro-graphite doped polydimethylsiloxane composite film for enhancement of mechanical-to-electrical energy conversion with aluminum and its application.” Journal of the Taiwan Institute of Chemical Engineers, vol. 135, 104388, 2022.
[86] A. Rajabi‐Abhari, J. Lee, R. Tabassian, J. N. Kim, H. Lee & I. K. Oh, “Antagonistically Functionalized Diatom Biosilica for Bio‐Triboelectric Generators,” Small, vol. 18(20), 2107638, 2022.
[87] J. Peng, H. Zhang, Q. Zheng, C. M. Clemons, R. C. Sabo, S. Gong, & L. S. Turng, “A composite generator film impregnated with cellulose nanocrystals for enhanced triboelectric performance,” Nanoscale, vol. 9(4), 1428-1433, 2017.
[88] Q. M. Saqib, R. A. Shaukat, M. U. Khan, M. Chougale, & J. Bae, “Biowaste peanut shell powder-based triboelectric nanogenerator for biomechanical energy scavenging and sustainably powering electronic supplies.” ACS Applied Electronic Materials, vol. 2(12), 3953-3963, 2020.
[89] C. X. Lu, C. B. Han, G. Q. Gu, J. Chen, Z. W. Yang, T. Jiang & Z. L. Wang, “Temperature effect on performance of triboelectric nanogenerator.” Advanced Engineering Materials, vol. 19(12), 1700275, 2017.
[90] N. Rafiefard, S. Fardindoost, M. K. Kisomi, L. Shooshtari, A. Irajizad, S. Seddighi & D. Vashaee, “High-performance flexible and stretchable self-powered surface engineered PDMS-TiO2 nanocomposite A Facile Method and Novel Mechanism sensing range.” Sensors and Actuators B: Chemical, vol. 378, 133105, 2023.
[91] R. F. S. M. Ahmed, S. B. Mohan, S. M. Ankanathappa, M. B. Ravindranath & K. Sannathammegowda, “Effect of humidity on the performance of polyvinyl chloride based triboelectric nanogenerator.” Materials Today: Proceedings, vol. 66, 2468-2473,2022.
[92] Y. Hu, X. Wang, H. Li & Z. Li, “Effect of humidity on tribological properties and electrification performance of sliding-mode triboelectric nanogenerator.” Nano Energy, vol. 71, 104640, 2020.
[93] 丁勝懋, 雷射工程導論, 修訂第四版, 中央圖書出版社, 台北, 2003/04
[94] S. O. Kasap, “Optoelectronics and Photonics : Principles and Practices, Prentice Hall,” New Jersey, 2001.
[95] S. Prakash, & S. Kumar, “Experimental investigations and analytical modeling of multi-pass CO2 laser processing on PMMA.” Precision Engineering, vol. 49, 220-234, 2017.
[96] S. Prakash, & S. Kumar, “Determining the suitable CO2 laser based technique for microchannel fabrication on PMMA.” Optics & Laser Technology, vol. 139, 107017, 2021.
[97] C. K. Chung & K. H. Ke, “High contact surface area enhanced Al/PDMS triboelectric nanogenerator using novel overlapped microneedle arrays and its application to lighting and self-powered devices.” Applied Surface Science, vol. 508, 145310, 2020.
[98] S. Chen, C. Gao, W. Tang, H. Zhu, Y. Han, Q. Jiang, T. Li, X. Cao & Z. Wang, “Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator.” Nano Energy, vol. 14, 217-225, 2015.
[99] A. I. Uddin & G. S. Chung, “A self-powered active hydrogen gas sensor with fast response at room temperature based on triboelectric effect.” Sensors and Actuators B: Chemical, vol. 231, 601-608, 2016.
[100] C. Wu, C. Fan & G. Wen, “Self-powered speed sensor for turbodrills based on triboelectric nanogenerator.” Sensors, vol. 19(22), 4889, 2019.
[101] M. F. Lin, J. Xiong, J. Wang, K. Parida & P. S. Lee, “Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications.” Nano Energy, vol. 44, 248-255, 2018.
[102] J. Wang, C. Zhang, D. Chen, M. Sun, N. Liang, Q. Cheng, Y. Ji, H. Gao, Y. Li, D. Sun, Q. Li & H. Liu, “Fabrication of a sensitive strain and pressure sensor from gold nanoparticle-assembled 3D-interconnected graphene microchannel-embedded PDMS.” ACS Applied Materials & Interfaces, vol. 12(46), 51854-51863, 2020.
[103] J. Yu, X. Hou, M. Cui, S. Shi, J. He, Y. Sun, C. Wang, & X. Chou, “Flexible PDMS-based triboelectric nanogenerator for instantaneous force sensing and human joint movement monitoring.” Science China Materials, vol. 62(10), 1423-1432, 2019.
[104] K. H. Ke, & C. K. Chung, “High-Performance Al/PDMS TENG with Novel Complex Morphology of Two-Height Microneedles Array for High-Sensitivity Force-Sensor and Self-Powered Application,” Small, vol. 16(35), 2001209, 2020.
[105] Y. Wu, Y. Luo, J. Qu, W. A. Daoud, & T. Qi, “Nanogap and Environmentally Stable Triboelectric Nanogenerators Based on Surface Self-Modified Sustainable Films.” ACS Applied Materials & Interfaces, vol. 12(49), 55444-55452, 2020.
[106] T. Zhou, C. Zhang, C. B. Han, F. R. Fan, W. Tang & Z. L. Wang, “Woven structured triboelectric nanogenerator for wearable devices.” ACS applied materials & interfaces, vol. 6(16), 14695-14701, 2014.
[107] H. Zhang, P. Zhang & W. Zhang, “A high-output performance mortise and tenon structure triboelectric nanogenerator for human motion sensing.” Nano Energy, vol. 84, 105933, 2021.
[108] Y. Zeng, H. Xiang, N. Zheng, X. Cao, N. Wang & Z. L. Wang, “Flexible triboelectric nanogenerator for human motion tracking and gesture recognition.” Nano Energy, vol. 91, 106601. 2022.
[109] Z. Zhang, T. He, M. Zhu, Z. Sun, Q. Shi, J. Zhu, B. Dong, M. R. Yuce & C. Lee, “Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications.” Flexible Electronics, vol. 4(1), 1-12, 2020.
[110] J. Yun, N. Jayababu & D. Kim, “Self-powered transparent and flexible touchpad based on triboelectricity towards artificial intelligence.” Nano Energy, vol. 78, 105325, 2020.
[111] D. Doganay, M. O. Cicek, M. B. Durukan, B. Altuntas, E. Agbahca, S. Coskun & H. E. Unalan, “Fabric based wearable triboelectric nanogenerators for human machine interface.” Nano Energy, vol. 89, 106412, 2021.
校內:不公開