| 研究生: |
劉彥亨 Liu, Yen-Heng |
|---|---|
| 論文名稱: |
以數值模擬與流場可視化技術來改善晶圓清洗槽之清洗效率 Improvising the Rinse Efficiency in a Wafer Rinse Process Using 3D Numerical Modeling and Flow Visualization Methods |
| 指導教授: |
陳嘉元
Chen, Chia-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 晶圓 、清洗槽 、擋塊 |
| 外文關鍵詞: | Wafer, Rinse tank, Lifter |
| 相關次數: | 點閱:122 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
晶圓是由不同的製程搭配不同的清洗槽內的清洗過程所形成的半導體元件的基礎,更是半導體產品重要的開始。清洗的目的最主要是為了防止或去除原生氧化層、移除晶圓表面汙染物及保持晶圓表面,清洗過程決定了晶圓表面之潔淨度的好壞,潔淨度是影響晶圓製程良率 (Yield) 、元件品質 (Quality) 及可靠度 (Reliability) 的重要因素,並降低產量的損失。微粒汙染物會隨著清洗液流動而停滯於擋塊及清洗槽壁面,最嚴重的是停滯於晶圓表面導致晶圓缺陷。本研究利用數值模擬方法與 PIV 實驗方法建立流場可視化之內流場循環系統,再通過設計擋塊有不同的轉動角度來改變流場,提升微粒汙染物移除率及降低微粒汙染物沉積,藉此達到提升清洗效率,發現當中間擋塊的轉動角度越大,大渦流區的面積增大隨之清洗面積也增大,並且解決兩側擋塊微粒汙染物的沉積。
Semiconductor wafers, which is the base of any semiconductor devices subjects to numerous bathing in a wafer rinsing tank post each processing operation, in order to remove surface contamination that arises during the manufacturing protocols. However in this method, some of the processing fluid accumulates near the lifters on which the wafers are usually mounted. In this thesis, it was aimed to enhance the wafer rinsing efficiency through the flow field manipulation by implementing a new design of lifters’ through the orientation change of lifting angle. Flow field inside the tank was studied through 3-D numerical modeling and PIV methods mean while changing the orientation of the lifters inside the rinsing tank. From the obtained results, it can be concluded that a better flow field can be derived which will be able to flush out most of the particulates when the orientation of the middle lifter is changed either in a clock or counter clock wise direction at an angle of 600.
[1] 小川洋輝‧崛池靖浩,2003,”半導體潔淨技術”,顏誠廷譯,普林斯頓國際 有限公司。
[2] 前田和一,2003,”半導體製造裝置”,鄭正忠譯,普林斯頓國際有限公司。
[3] D. E. Rosner, (1986). “Transport Processes in Chemically Reacting Flow Systems,” Butterworths, Stoneham, MA.
[4] N. A. Fuchs, (1964). “The Mechanics of Aerosols,” Pergamon Press, New York.
[5] S. k. Friedlander, (1977). “Smoke Dust and Haze: Fundamentals of Aerosol Behavior,” John Wiley, New York.
[6] J. Fernandez de la Mora, and D. E. Ronser, (1981). “Inertial deposition of particles revisited and extended: Eulerian approach to traditionally Lagrangian problem,” Physicochem. Hydrodyn., vol. 2, pp. 1-21.
[7] S. S. Kim, and Y. J. Kim, (1986). “Experimental studies on particle deposition by thermophoresis and inertial impaction from particulate high temperature gas flow,” Presented at 4th Int. Symp. on multiphase transport, 15-17 December, Miami, FL.
[8] Y. I. Kim, and S. S. Kim, (1988). “Experimental and numerical investigations of particle size effects on the particle deposition form non-isothermal stagnation point flows,” Proceedings of the First KSME-JSME Thermal and Fluids Engineering Conference, pp. 2/177-2/182. 1-3 November, Seoul, Korea.
[9] Y. I. Kim, and S. S. Kim, (1991). “Particle size effects on the particle deposition from non-isothermal stagnation point flows,” Journal of Aerosol Science, vol. 22, pp. 201-214.
[10] A. G. Konstandopoulos, and D. E. Rosner, (1995). “Inertial Effects on Thermophoretic Transport of Small Particles to Walls with Streamwise Curvature-I : Theory,” International Journal of Heat and Mass Transfer, vol. 38, pp. 2305-2315.
[11] A. G. Konstandopoulos, and D. E. Rosner, (1995). “Inertial Effects on Thermophoretic Transport of Small Particles to Walls with Streamwise Curvature-I: Theory,” International Journal of Heat and Mass Transfer, vol. 38, pp. 2317-2327.
[12] L. Talbot, R. k. Cheng, R. W. Schefer, and D. R. Willis, (1980). “Thermophresis of Particles in a Heated Boundary Layer,” Journal of Fluid Mechanics, vol. 101, pp. 737-758.
[13] G. K. Batchelor, and C. Shen, (1985). “Thermophoretic deposition of particles in gas flowing over cold surfaces,” Journal of Colloid Interface Science, vol. 107, pp. 21-37.
[14] S. L. Goren, (1977). “Thermophoresis of aerosol particles in the laminar boundary layer on a flat plate,” Journal of Colloid Interface Science, vol. 61, pp. 77-85.
[15] R. J. Turner, D. K. Liguras, and H. Fissan, (1989). “Clean room applications of particle deposition from stagnation flow: electrostatic effects,” Journal of Aerosol Science, vol. 20, pp. 683-693.
[16] H. Bai, and P. Biswas, (1990). “Deposition of lognormally distributed aerosols accounting for simultaneous diffusion, thermophoresis and coagulation,” Journal of Aerosol Science, vol. 21, pp. 629-640.
[17] 龐寧寧,(2006). “漫談布朗運動”,物理雙月刊 (廿八卷一期)。
[18] C. N. Davies, (1945). “Definitive equations for the fluid resistance of spheres,” Proceeding of Physical Society, vol. 57, pp. 259-270.
[19] C. E. Brennen, (2005). “Fundamentals of multiphase flow,” Cambridge University. Press, pp. 36.
[20] 王秋森,(1995). “氣膠原理與應用”,行政院勞工委員會勞工安全衛生研究所。
[21] L. Waldmann, (1959). “Über doe Kraft eines inhomogenen Gases auf kleine suspendierte Kugeln,” Zeitschrift für Naturforschung, 14a, pp. 589-599.
[22] L. Waldmann, (1961). “On the motion of spherical particles in nonhomogeneous gases,” In Talbot, L., (ed.) Rarefied Gas Dynamics, Academic Press, New York, pp. 323-344.
[23] J. R. Brock, (1962). “On the theory of thermal forces acting on aerosol particles,” Journal of Colloid Science, vol. 17, pp. 768-780.
[24] B. V. Derjaguin, and Y. Yalamov, (1965). “Theory of thermophoresis of large aerosol particles,” Journal of Colloid Science, vol 20, pp. 550-570.
[25] B. V. Derjaguin, A. L. Storozhilova, and Y. I. Rabinovich, (1966). “Experimental verification of the theory of thermophoresis of aerosol particles,” Journal of Colloid and Interface Science, vol 21, pp. 35-58.
[26] B. V. Derjaguin, Y. I. Rabinovich, A. I. Storozhilova, and G. I. Shcherbina, (1976). “Measurement of the coefficient of thermal slip of gases and the thermophoresis velocity of large-size aerosol particles,” Journal of Colloid and Interface Science, vol. 57, pp. 451-461.
[27] F. F. Reuss, (1809). “Sur un nouvel effet de l'électricité galvanique,” Mémoires de la Société Impériale desNaturalistes de Moscou. Moscou, vol 2, pp.327-337.
[28] J. K. Laidler, J. H. Meiser, and B. C. Sanctuary, (2003). “物理化學”,郭冠麟、王榮英、林振隆和陳寶祺譯,學富文化事業有限公司,pp. 594-596.
[29] H. C. Hamaker, (1937). “The London-van der Waals attraction between spherical particles,” Physica(Utrecht), vol. 4, pp. 1058-1072.
[30] 張和裕,(2009). ”半導體晶圓廠的清潔劑”,三聯技術雜誌,vol 73, pp. 9-14。
[31] 陳炤彰、許育豪、張紹華、嶋‧昇平和磯野‧慎太郎,(2012). ”晶圓清洗製程之表面水痕分析研究”,全國精密製造研討會。
[32] D. J. Hymes, and I. J. Malik, (1996). “Using double-sided scrubbing systems for multiple general fab applications,” MICRO, pp. 55-66.
[33] R. J. Kuo, and E. Matijevic, (1980). “Particle adhesion and removal in model system,” Journal of Colloid and Interface Science, vol 78, pp. 407-421.
[34] V. B. Menon, L. D. Michaels, A. C. Clayton, and R. P. Donovan, (1989). “Effects of particulate size, composition, and medium on silicon wafer cleaning,” Solid State Technology, vol 32, pp. s9-s11.
[35] S. Shwartzman, A. Mayer, and W. Kern, (1985). “Megasonic particle removal from solid state wafers,” RCA Review, vol 46, pp. 81-105.
[36] 簡弘民、盧信忠、黃尊祐和蔡春進,(1999). ” 半導體晶圓表面清洗技術發展”,勞工安全衛生研究季刊,vol 7,pp. 209-229。
[37] B. S. Meyerson, E. Ganin, D. A. Smith, and T. N. Nguyen, (1986) “Low temperature silicon epitaxy by hot wall ultrahigh vacuum/low pressure chemical vapor deposition techniques: surface optimization,” Journal of the electrochemical Society, vol. 133, pp. 1232-1235.
[38] M. Wong, M. M. Moslehi, and D. W. Reed, (1991). “Characterization of wafer cleaning and oxide etching using vapor-phase hydrogen fluoride,” Journal of the electrochemical Society, vol 138, pp. 1799-1802.
[39] Z. H. Zhou, E. S. Aydil, R. A. Gottscho, Y. J. Chabal, and R. Reif, (1993). “Real-time, in situ monitor of room-temperature silicon surface cleaning using hydrogen and ammonia plasma,” Journal of the electrochemical Society, vol 140, pp. 3316-3321.
[40] S. R. Kasi, and M. Liehr, (1990). “Vapor phase hydrocarbon removal for Si processing,” Applied Physics Letters, vol 57, pp. 2095-2097.
[41] T. J. Magee, and C. S. Leung, (1991). “Scanning UV laser removal of contaminants from semiconductor and optical surface,” In Mittal, K. L., (ed.) Particles on Surfaces, 3: Detection, Adhesion and Removal, pp. 307-316.
[42] J. D. Kelly, and F. E. Hovis, (1993). “A thermal detachment mechanism for particle removal from surfaces by pulsed laser irradiation,” Microelectronic Engineering, vol 20, pp. 159.
[43] J. B. Heloux, S. Boughaba, I. Ressejac, E. Sacher, and M. Meunier, (1996). “CO2 laser-assisted particle removal of submicron particles from solid surfaces,” Journal of Applied Physics, vol 79, pp. 2857.
[44] L. Layden, and D. J. Wadlow, (1990). “High velocity carbon dioxide snow for cleaning vacuum system surfaces,” Journal of Vacuum Science and Technology, vol 8, pp. 3881-3883.
[45] K. C. Hsieh, (1990). “Studies of particle reentrainment/detachment from flat surfaces,” Ph.D. Thesis, University of Minnesota.
[46] M. C. Kordecki, and C. Orr, (1960). “Adhesion of solid particles to solid surfaces,” Archives of Environmental Health, vol 1, pp. 13/1-21/9.
[47] K. Gotoh, K. Karube, H. Masuda, and Y. Banba, (1996). “High-efficiency removal of fine particles deposited on a solid surface,” Advanced Powder Technology, vol 7, pp. 219-232.
[48] 藤原邦夫, 細川章宏, 寺島幸三和大澤篤史,(2011). “基板處理裝置以及基板處理方法”,CN Patent No. 101546695 B。
[49] Y. J. Huh, S. B. Han, J. J. Kim, (2003). “Semiconductor wafer cleaning apparatus,” US Patent No. 6532976 B1.
[50] Y. J. Huh, S. B. Han, (1998) “Cleaning apparatus of semiconductor device,” US Patent No. 5850840.
[51] S. B. Han, (1998) “Apparatus for cleaning semiconductor wafer,” US Patent No. 5799678.
[52] M. Tanaka, T. Kobayashi, (1999). “Substrate treating apparatus ,” US Patent No. 5875804.
[53] S. V. Patanker, and D. B. Spalding, (1972). “A calculation processure for heat, mass and momentum transfer in three-dimensional parabolic flows,” International Journal of Heat and Mass Transfer, vol 15, pp. 1787-1806.
[54] S. K. Masafumi Kawatani, K. Kouzou Terashima, and S. K. Hazime Shirakawa, (1996). “Immersion-type apparatus for processing substrates,” US patent No. 5540247.