簡易檢索 / 詳目顯示

研究生: 黃塏竣
Huang, Kai-Chun
論文名稱: 圖樣石墨烯室溫氨氣感測器
Patterned graphene sensors for ammonia gas detection at room temperature
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 93
中文關鍵詞: 石墨烯化學氣相沉積氨氣氣體感測
外文關鍵詞: graphene, CVD, ammonia, gas sensor
相關次數: 點閱:60下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯材料在近幾年來,有相當多研究團隊願意投入心血在這個具有無窮應用潛力的新材料上;本論文中,我們利用電子束蒸鍍鎳金屬圖樣在銅箔上,並且利用化學氣相沉積技術成長出單層/多層的石墨烯材料,在鎳圖樣的範圍則因為成長機制與銅催化金屬不同,而能長成多層石墨烯;我們首先成功控制氫氣與甲烷之反應氣體,長出了連續的單層石墨烯,並且一步步往多層圖樣石墨烯的目標邁進,我們探討了蒸鍍鎳金屬的厚度、鎳圖樣的大小尺寸以及鎳圖樣之間距,在蒸鍍鎳厚度的討論上,我們發現厚度在超過100 nm的鎳金屬,在高溫爐中,會因為與銅的熱膨脹係數不同,而導致成長基板呈現波浪起伏,這並不利於石墨烯的成長。在鎳圖樣大小尺寸的討論中,也有相同的狀況,只能讓鎳圖樣在一定面積下佔有最多10%的面積比例。在鎳圖樣間距的討論當中,我們也證實了在氣體感測領域中,單層石墨烯比多層石墨烯的氣體感測性要來得好很多,這是因為石墨烯內部的載子濃度不同所致。最後我們將材料應用於感測氨氣氣體,在氨氣氣體濃度180ppm,室溫下能達到45.16%的氣體響應性,這跟文獻中相比較,是很出色的結果。

    This research is about the ammonia gas sensor used by chemical vapor deposition single and multi-layer of graphene. We deposited the nickel metal patterns on the copper foils, and transfer on the silicon wafer to make a sensor device. We got the high sensitivity about the ammonia gas sensor. At room temperature, the sensor shows 45.16% under 180 ppm ammonia gas flow.

    摘要 I Extended abstract II 致謝 XXIV 目錄 XXVI 表目錄 XXX 圖目錄 XXXI 第一章 緒論 1 1-1 石墨烯的發展歷史 1 1-2 石墨烯的介紹 3 1-2-1 石墨烯的結構 3 1-2-2 石墨烯的性質 3 1-3 研究動機 6 第二章 理論基礎與文獻回顧 7 2-1 石墨烯的製備 7 2-1-1 機械剝離法 7 2-1-2 碳化矽(SiC)熱裂解法 9 2-1-3 氧化還原石墨法 10 2-1-4 超音波剝離法 11 2-1-5 化學氣相沉積法 12 2-2 氣體感測概論 13 2-2-1 氣體吸/脫附理論[38] 13 2-2-2 物理性吸附(Physical adsorption) 13 2-2-3 化學性吸附(Chemical adsorption) 15 2-2-4 氣體感測元件效能參數 15 2-2-5 各碳材料簡介與其氣體感測之應用 16 2-3 石墨烯應用於氣體感測 22 2-3-1 石墨烯氣體感測機制 22 2-3-2 石墨烯氣體感測實例 23 2-3-3 缺陷石墨烯應用於氣體感測 25 2-4 動機發想 27 2-4-1 石墨烯成長於鎳基板 27 2-4-2 石墨烯成長於銅基板 28 第三章 實驗步驟與設備 29 3-1 實驗流程 29 3-1-1 電解拋光商用銅箔並利用電子束蒸鍍鎳金屬在銅箔表面 30 3-1-2 利用化學氣相沉積法製備石墨烯薄膜並轉印 31 3-1-3鍍上金電極,作氨氣氣體感測實驗 32 3-2 實驗操作系統 33 3-2-1 電解拋光系統 33 3-2-2 化學氣相沉積石墨烯薄膜系統 36 3-2-3 反應氣體流量輸入/反應器 36 3-2-4 加溫及溫控系統 37 3-2-5 真空及排氣系統 38 3-2-6 氣體感測系統 38 3-3 實驗材料及藥品 40 3-3-1 基板材料 40 3-3-2 清洗溶劑、實驗藥品及實驗氣體 40 3-4 實驗步驟 41 3-4-1 實驗流程圖 41 3-4-2 銅箔電解拋光處理 41 3-4-3 銅箔鍍上鎳圖樣 42 3-4-4 石墨烯製備實驗步驟 42 3-4-5 石墨烯轉印至矽基板 43 3-4-6 氣體感測步驟 44 3-5 實驗儀器與結果分析儀器 45 3-5-1 電子束蒸鍍 45 3-5-2 化學氣相沉積 47 3-5-3 表面粗度儀(Alpha-step) 48 3-5-4 原子力顯微鏡(Atomic Force Microscope, AFM) 48 3-5-4 光學顯微鏡 50 3-5-5 拉曼光譜儀 50 3-5-6 穿透式顯微鏡 51 3-5-7 電子能譜儀 52 第四章 實驗結果與討論 53 4-1 探討電解拋光電壓參數對銅箔表面形貌之影響 53 4-1-1 時間對電流分析 54 4-1-2 表面粗度儀分析 58 4-1-3 原子力顯微鏡分析 60 4-2 化學氣相沉積法中反應氣體氫氣與甲烷比例之影響 64 4-2-1 光學顯微鏡分析 65 4-2-2 拉曼光譜分析 67 4-2-3 穿透式電子顯微鏡分析 70 4-3 電子束蒸鍍鎳圖樣分析 73 4-3-1 鎳圖樣厚度之分析 73 4-3-2鎳圖樣大小之分析 80 4-3-3 鎳圖樣大小與間距之分析 82 4-4 氣體感測分析 84 4-5 氣體吸附後之電子能譜儀分析 87 第五章 結論 88 參考文獻 89

    參考文獻

    1. Geim, A.K. and P. Kim, Carbon wonderland. Scientific American, 2008. 298(4): p. 90-97.
    2. Dreyer, D.R., R.S. Ruoff, and C.W. Bielawski, From conception to realization: an historial account of graphene and some perspectives for its future. Angew Chem Int Ed Engl, 2010. 49(49): p. 9336-44.
    3. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
    4. Chen, J.H., et al., Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol, 2008. 3(4): p. 206-9.
    5. Hrostowski, H.J., et al., Hall Effect and Conductivity of InSb. Physical Review, 1955. 100(6): p. 1672-1676.
    6. Dürkop, T., et al., Extraordinary mobility in semiconducting carbon nanotubes. Nano letters, 2004. 4(1): p. 35-39.
    7. Lee, C., et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. science, 2008. 321(5887): p. 385-388.
    8. Eda, G., G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature nanotechnology, 2008. 3(5): p. 270-274.
    9. Kim, K.S., et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009. 457(7230): p. 706-10.
    10. Wang, X., L. Zhi, and K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano letters, 2008. 8(1): p. 323-327.
    11. Yan, H., et al., Enhanced thermal conductivity in polymer composites with aligned graphene nanosheets. Journal of Materials Science, 2014. 49(15): p. 5256-5264.
    12. Vargas, O., et al., Electrochemical performance of a graphene nanosheets anode in a high voltage lithium-ion cell. Physical Chemistry Chemical Physics, 2013. 15(47): p. 20444-20446.
    13. Yang, X., et al., A High-Performance Graphene Oxide-Doped Ion Gel as Gel Polymer Electrolyte for All-Solid-State Supercapacitor Applications. Advanced Functional Materials, 2013. 23(26): p. 3353-3360.
    14. Wajid, A.S., et al., Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon, 2012. 50(2): p. 526-534.
    15. Iyechika, Y., Application of graphene to high-speed transistors: expectations and challenges. Sci. Technol. Trends, 2010. 37: p. 76-92.
    16. Mohanty, N. and V. Berry, Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano letters, 2008. 8(12): p. 4469-4476.
    17. Schedin, F., et al., Detection of individual gas molecules adsorbed on graphene. Nat Mater, 2007. 6(9): p. 652-5.
    18. Novoselov, K.S., et al., Two-dimensional atomic crystals. Proc Natl Acad Sci U S A, 2005. 102(30): p. 10451-3.
    19. Meyer, J.C., et al., The structure of suspended graphene sheets. Nature, 2007. 446(7131): p. 60-3.
    20. Akcöltekin, S., et al., Graphene on insulating crystalline substrates. Nanotechnology, 2009. 20(15): p. 155601.
    21. Berger, C., et al., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. The Journal of Physical Chemistry B, 2004. 108(52): p. 19912-19916.
    22. Strupinski, W., et al., Graphene epitaxy by chemical vapor deposition on SiC. Nano Lett, 2011. 11(4): p. 1786-91.
    23. Shao, G., et al., Graphene oxide: the mechanisms of oxidation and exfoliation. Journal of Materials Science, 2012. 47(10): p. 4400-4409.
    24. Dimiev, A.M. and J.M. Tour, Mechanism of graphene oxide formation. ACS nano, 2014. 8(3): p. 3060-3068.
    25. Chen, D., H. Feng, and J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev, 2012. 112(11): p. 6027-53.
    26. Vazquez de Parga, A.L., et al., Periodically rippled graphene: growth and spatially resolved electronic structure. Phys Rev Lett, 2008. 100(5): p. 056807.
    27. Land, T., et al., STM investigation of single layer graphite structures produced on Pt (111) by hydrocarbon decomposition. Surface Science, 1992. 264(3): p. 261-270.
    28. Coraux, J., et al., Structural coherency of graphene on Ir (111). Nano letters, 2008. 8(2): p. 565-570.
    29. Reina, A., et al., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano letters, 2008. 9(1): p. 30-35.
    30. Li, X., et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009. 324(5932): p. 1312-1314.
    31. Morrison, S., The chemical physics of surfaces. 2012: Springer Science & Business Media.
    32. Brunauer, S., P.H. Emmett, and E. Teller, Adsorption of gases in multimolecular layers. Journal of the American chemical society, 1938. 60(2): p. 309-319.
    33. Brunauer, S., et al., On a theory of the van der Waals adsorption of gases. Journal of the American Chemical society, 1940. 62(7): p. 1723-1732.
    34. Llobet, E., Gas sensors using carbon nanomaterials: A review. Sensors and Actuators B: Chemical, 2013. 179: p. 32-45.
    35. Lei, H., et al., Resistivity measurements of carbon–polymer composites in chemical sensors: impact of carbon concentration and geometry. Sensors and Actuators B: Chemical, 2004. 101(1-2): p. 122-132.
    36. Hopkins, A.R. and N.S. Lewis, Detection and classification characteristics of arrays of carbon black/organic polymer composite chemiresistive vapor detectors for the nerve agent simulants dimethylmethylphosphonate and diisopropylmethylphosponate. Analytical chemistry, 2001. 73(5): p. 884-892.
    37. Zhang, L., et al., Electrospun carbon nano-felt surface-attached with Pd nanoparticles for hydrogen sensing application. Materials Letters, 2012. 68: p. 133-136.
    38. Zhang, B., et al., Gas sensitive vapor grown carbon nanofiber/polystyrene sensors. Materials Research Bulletin, 2006. 41(3): p. 553-562.
    39. Iijima, S., Helical microtubules of graphitic carbon. nature, 1991. 354(6348): p. 56-58.
    40. Kong, J., et al., Nanotube molecular wires as chemical sensors. Science, 2000. 287(5453): p. 622-625.
    41. Collins, P.G., et al., Extreme oxygen sensitivity of electronic properties of carbon nanotubes. science, 2000. 287(5459): p. 1801-1804.
    42. Wehling, T., M. Katsnelson, and A. Lichtenstein, Adsorbates on graphene: Impurity states and electron scattering. Chemical Physics Letters, 2009. 476(4): p. 125-134.
    43. Chen, C., et al., Oxygen sensors made by monolayer graphene under room temperature. Applied Physics Letters, 2011. 99(24): p. 243502.
    44. Yu, K., et al., Patterning vertically oriented graphene sheets for nanodevice applications. The Journal of Physical Chemistry Letters, 2011. 2(6): p. 537-542.
    45. Zhang, Y.-H., et al., Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology, 2009. 20(18): p. 185504.
    46. Han, T.H., et al., Steam etched porous graphene oxide network for chemical sensing. Journal of the American Chemical Society, 2011. 133(39): p. 15264-15267.

    下載圖示 校內:2021-08-06公開
    校外:2021-08-07公開
    QR CODE